Mark Scheme (RESULTS) J anuary 2008

GCE

GCE Biology (6101/01)

Question Number	Answer			Mark
1	Statement	Glycogen	Cellulose	$\max _{4}$
	Consists of β glucose	X	\checkmark	
	Contains 1,4 glycosidic bonds	\checkmark	\checkmark	
	Is a branched molecule	\checkmark	X	
	Is a structural carbohydrate	X	\checkmark	
	Any two correct boxes for one mark			

Question Number	Answer	Mark
$\mathbf{2}$	1. (simple) diffusion ; 2. facilitated diffusion ; 3. active transport ; 4. ATP ;	$\mathbf{4}$

Question Number	Answer	Mark
$\mathbf{3}$ (a)(i)	the \{sequence / order\} of amino acids;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{3}$ (a)(ii)	hydrolysis;	$\mathbf{1}$

Question Number	Answer	Mark
3 (b)		1

Question Number	Answer		Mark
3 (c)	Collagen	Insulin	$\max _{3}$
	1. fibrous	globular ;	
	2. three \{polypeptide chains\}/ triple helix	two \{polypeptide chains\}/ reference to A and B chains ;	
	3. chains not held together by disulphide bonds / chains held together by hydrogen bonds	chains held together by disulphide bonds / eq ;	
	4. large / about 1000 amino acids OR length can be variable	small / 51 amino acids OR fixed / precise length ;	
	5. repetitive / repeating sequence / eq	no repetitive sequence ;	

Question Number	Answer	Mark
$\mathbf{4}$ (a)	1. reference to (same / similar) cells ; 2. of similar \{structure / common origin / function\}/eq ;	

Question Number	Answer	Mark
$\mathbf{4 ~ (b) ~}$	1. correct dimensions; 2. folded inner lining ; 3. 5 or 6 tissues shown with no cell details ;	

Question Number	Answer	Mark
$\mathbf{5}$ (a)(i)	cell in anaphase correctly identified;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{5}$ (a)(ii)	cell in telophase correctly identified ;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{5}$ (a)(iii)	$2 / 3$;	$\mathbf{1}$

Question Number	Answer	Mark
5 (b)	1. idea that during prophase \{chromosomes / chromatids\} (becoming) visible ; 2. idea of centrioles move to opposite poles ; 3. reference to formation of \{spindle / spindle-fibres / microtubules\} ; 4. disappearance of nucleolus / nucleoli ; 5. breaking down of nuclear \{envelope / membrane\} (in prophase) or nuclear envelope is broken down by metaphase / eq ; 6. (at metaphase) \{chromosomes / centromeres\} attached to spindle (fibres) ; 7. idea of \{chromosomes / chromatids\} lined up at equator ;	$\begin{aligned} & \max \\ & 5 \end{aligned}$

Question Number	Answer	Mark
6 (a)	1. \{envelope / double membrane\} clearly shown; 2. granum clearly shown ; 3. $\{g r a n u m / t h y l a k o i d(s)\}$ labelled ; 4. \{stroma / ribosomes / starch grain / DNA / lipid droplet / \{double / inner / outer\} membrane / envelope / intergranal lamellae\} correctly labelled ;	4

Question Number	Answer	Mark
$\mathbf{6}$ (b)(i)	1. correct length ; 2. divided by 50000 ; 3. correct length in $\mu \mathrm{m} ;$	$\mathbf{3}$

Question	Answer	Mark
Number	$\mathbf{6}$ (b)(ii)	vacuoles / vesicles / lysosomes / glycogen granules / ribosomes / lipid droplets / centrioles / spindle fibre / microtubules;

Question Number	Answer	Mark
$\mathbf{6}$ (b)(iii)	\{resolution not high enough / eq\}/ damage / \{angle of section / eq\}/ \{poor printing of photograph / eq\};	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{7}$ (a)	1. reference to use of \{iodine solution / iodine in potassium iodide\} ; 2. \{observation / colour change\} described ; 3. credit any valid experimental details ;	

Question Number	Answer	Mark
$\mathbf{7}$ (b)	1. overall decrease in activity ; 2. increasing concentration up to 4 au increases the activity of amylase ;	3. increasing concentration from 4 au (to 32 au) reduces activity ; 4. reference to change in activity at 20 au ; 5. correct manipulation of data ;

Question Number	Answer	Mark
7 (c)	1. \{copper ions / inhibitor\} block the active site / eq ; 2. idea that inhibitor is the same shape as substrate ; 3. preventing \{starch / substrate\} binding with \{amylase / active site / enzyme\}; 4. the more \{copper ions / inhibitor\} the more active sites are blocked; 5. reduces enzyme activity / eq ;	$\max _{3}$

Question Number	Answer	Mark
$\mathbf{7 (d) (i)}$	1. it allows a comparison to be made (with and without copper ions) ; 2. reference to \{starch / substrate\} concentration being the same (with and without copper ions) ;	
	3. the rate of reaction changes with time / eq ; 4. because substrate is being used up / eq ;	\max

Question Number	Answer	Mark
$\mathbf{7}$ (d)(ii)	idea that the \{maximum rate/ $\left.\mathrm{V}_{\text {max }}\right\}$ (with copper ions present) is lower (than without inhibitor) / if it was active site-directed it would take longer to reach same maximum rate ;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{8 (a)}$	A phosphate B deoxyribose ;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{8 (b) (i)}$	Adenine 29, Guanine 21, Cytosine 21;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{8}$ (b)(ii)	1. a purine always bonds to a pyrimidine ; 2. \%thymine must equal \%adenine / eq ; 3. guanine and cytosine must make up rest of molecule / eq ; 4. \% guanine $=\%$ cytosine / eq ;	\max $\mathbf{3}$

Question Number	Answer	Mark
$\mathbf{8 (c)}$	1. DNA contains genetic information / eq ; 2. DNA codes for protein / eq ; 3. a change in DNA could produce a different \{protein / mRNA\} / eq ; 4. idea that it is required throughout life (or \{cell / organism\}) ; 5. idea that it is needed to pass on to next generation (of \{cell / organism\}) ;\max $\mathbf{2}$	

Question Number	Answer	Mark
8 (d)	1. part of the DNA (molecule) unwinds ; 2. DNA strands separate / \{hydrogen / H\} bonds break; 3. idea only one strand acts as a template ; 4. (free) nucleotides line up against DNA ; OR reference to complementary base pairing / correct description ; 5. correct reference to RNA polymerase ; 6. reference to \{nucleotides joining together / formation of phosphodiester bonds\}; 7. (to form) mRNA ; 8. exits through nuclear pore / from nucleus to cytoplasm / movement to ribosomes;	$\max _{5}$

PAPER TOTAL: 60 MARKS

