Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	1	0	6	/	0	3	Signature	_

6106/03

Edexcel GCE

Biology

Biology (Human)

Advanced

Unit Test 6 Paper 03 Synoptic Paper Friday 24 June 2005 – Afternoon

Time: 1 hour 10 minutes

Materials	required	for	examination
Ruler			

Items included with question papers

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Check that you have the correct question paper.

Answer Questions 1 and 2 and then either Question 3 or either 4B or 5H in the spaces provided in this question paper.

Show all the steps in any calculations and state the units. Calculators may be used. Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). The total mark for this paper is 38.

There are 20 pages in this question paper. All blank pages are indicated.

Advice to Candidates

You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, taking account of your use of grammar, punctuation and spelling. This question paper is designed to give you the opportunity to make connections between different areas of biology and to use skills and ideas developed throughout the course in new contexts. You should include in your answers any relevant information from the whole of your course.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2005 Edexcel Limited.

W850/R6106/57570 7/8/7/2

Examiner's use only

Team Leader's use only

2 3

4B 5H

Turn over

Leave blank

(3)

Answer Questions 1 and 2 in the spaces provided.

1.	(a)	Yeast (<i>Saccharomyces cerevisiae</i>) is a single-celled fungus, which may be found growing naturally on the surface of fruits, including grapes. These yeast cells are diploid and reproduce by budding, forming a clone of cells. Under certain conditions, however, these diploid cells may undergo meiotic division. Each diploid cell forms four haploid cells, which are also capable of reproducing by budding.
		Haploid yeast cells exist in two strains, known as mating types a and α . An a cell and an α cell may fuse to form a diploid cell, with 32 chromosomes, which then continues to reproduce by budding.
		(i) State the number of chromosomes present in an α cell.
		(1)
		(ii) Suggest why it might be advantageous for yeast to reproduce by budding.
		(3)
		(iii) Yeast mating types a and α recognise each other by producing small protein molecules, which bind to the cell surface membrane of the opposite mating type. Suggest how the structure of the yeast cell surface membrane is related to this function.

Lagra
Leave
blank
DIAHK

(0)	the rise lack	Yeast cells are normally able to carry out aerobic respiration and produce ATP from the oxidation of glucose and other substrates. Mutation may occur in yeast, giving rise to cells known as petite mutants. These cells have abnormal mitochondria which ack many of the proteins involved in the electron transport chain. Petite mutant cells grow very slowly compared with normal yeast cells.					
	(i)	State the location of the electron transport chain within a mitochondrion.					
			(1)				
	(ii)	Suggest why petite cells grow slowly compared with normal yeast cells.					
			•••••				
			(3)				

DNA sample	DNA density/arbitrary units	
Normal nuclear	1.700	
Normal mitochondrial	1.684	
Petite nuclear	1.700	
Petite mitochondrial	1.680	
	(Total	(2
	(101111	12 mark
	(2011)	12 mark
	(zom.	12 mark
		12 mark

Leave

2. The term bioluminescence means the production of light by living organisms, as a result of their metabolic activity. Substances that adversely affect metabolism will cause a decrease in the production of light, or stop it completely.

One species of luminescent bacterium, *Photobacterium*, has been used to investigate the effect of heavy metals on bioluminescence. This method depends on finding the time taken for a solution containing the metal to completely stop the production of light by these bacteria.

In this investigation, small discs of filter paper were prepared, containing an immobilised culture of *Photobacterium*. The discs were then placed in separate bottles containing solutions of mercury chloride, cadmium chloride and nickel chloride, as shown in the diagram below.

The bottles were then kept in the dark at a constant temperature and examined after 30 minutes and then four more times until five hours after the start. The emission of light from the filter paper discs was observed and recorded. The results are shown in the tables below. In the tables, + indicates light emission; – indicates that no light was emitted.

Mercury chloride

Time/h	Concentration of mercury chloride solution/mg dm ⁻³							
Time/ii	0.05	0.10	0.50	1.0	10.0			
0.5	+	+	+	+	_			
1.0	+	+	+	+	_			
2.0	+	+	+	_	_			
3.0	+	+	_	_	_			
5.0	+	_	_	_	_			

Leave	
blank	

Cadmium chloride

Time / h	Concentration of cadmium chloride solution/mg dm ⁻³							
Time/ii	0.05	0.10	0.50	1.0	10.0			
0.5	+	+	+	+	+			
1.0	+	+	+	+	+			
2.0	+	+	+	+	+			
3.0	+	+	+	+	_			
5.0	+	+	+	+	-			

Nickel chloride

Time / h	Concentration of nickel chloride solution/mg dm ⁻³							
Time/ii	0.05	0.10	0.50	1.0	10.0			
0.5	+	+	+	+	+			
1.0	+	+	+	+	+			
2.0	+	+	+	+	+			
3.0	+	+	+	+	+			
5.0	+	+	+	+	_			

(a) Suggest reasons for each of the following.(i) The bacteria were immobilised in the filter paper discs.

•••••		•••••		
•••••	•••••	•••••	•••••	•••••

(ii) The bottles were kept at a constant temperature during the investigation.

(4)

This question continues on page 8

	•••••
	(2)
Which metal was the most toxic to <i>Photobacterium</i> ? Give an explanation for your superior of the second sec	
Suggest how this method could be used to investigate whether a sample of water to river had been polluted with beauty metals.	(2) from
Suggest how this method could be used to investigate whether a sample of water to river had been polluted with heavy metals.	

Leave blank

Write an essay on ONE of the following topics.

WIN	ic an essay on Orth of the following topies.	
	low indicating the question you have chosen (crough the box (☆) and then put a cross in	`—,
Chosen question number:	Question 3	
	Question 4B □	
	Question 5H 🖂	
For Biology you should c	choose EITHER Question 3 OR Question 4B	
3. Digestion and absorpt	tion of carbohydrates and the regulation of bloo	d glucose. (15 marks)
4B. The uptake, transport	and roles of mineral ions in flowering plants.	(15 marks)
For Biology (Human) yo	u should choose EITHER Question 3 OR Qu	estion 5H.
3. Digestion and absorpt	tion of carbohydrates and the regulation of bloo	d glucose. (15 marks)
5H. Humans as primates a	and the adaptations of humans to life at high alt	itudes. (15 marks)
communication. You shou	r scientific content, coverage of the topic, and the scientific content, coverage of the topic, and the scientific include in your answers any relevant information to it.	ation from the whole
Write your answer include	ding any plan here.	

Le bl:
 •
 •
 •
 .
 .
 •

b

	Leav blar

Leave

	Leav blar

Leave blank

Le bl:
 •
 •
 •
 .
 .
 •

Leave blank

	Lea bla

TOTAL FOR PAPER: 38 MARKS	
(Total 15 marks)	
 	_