Mark Scheme (RESULTS) J anuary 2008

GCE

GCE Biology (Salters Nuffield) (6131/ 01)

| Question
 Number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| 1(a) | Statement about Daphnia Tick or
 cross
 (i) The movement of fluid through the heart
 is an example of mass transport $\checkmark ;$
 (ii) Daphnia uses diffusion to transport
 oxygen into muscle cells $\checkmark ;$
 (iii) Daphnia tends to lose water from its
 body to the freshwater by osmosis $\times ;$
 (iv) Daphnia can use active transport to move
 ions from the freshwater into its body $\checkmark ;$ | $\mathbf{4}$ |

Question Number	Answer	Mark
$\mathbf{1}$ (b)(i)	$\mathrm{A}=50, \mathrm{~B}=75 \& \mathrm{C}=100 ;$	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1}$ (b)(ii)	$200 ;$	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1}$ (b)(iii)	1. only three Daphnia used / not enough \{samples / repeats\} to be representative / only one Daphnia used per concentration ;	
2. different Daphnia used (for each caffeine concentration) / different Daphnia used for 35 au ;	3. range not large enough to make prediction / eq ; 4. Daphnia may respond differently at higher concentrations / eq OR they may die ;	5. taking readings for 10 seconds not sufficient ;
6. describe one environmental variable to be controlled / allow time for Daphnia to acclimatise ;	\max	

Question Number	Answer	Mark
$\mathbf{2 ~ (a) (i) ~}$	1. (waxy layer) is waterproof ; 2. $\{$ \{enzyme / pectinase\} in (aqueous) solution ;	
3. (therefore) \{enzyme / pectinase\} unable to pass through (waxy layer) / unable to get to \{pectin / polysaccharide / carbohydrate\} / eq ;	4.pectinase is specific and will not digest lipid / waxy surface ;	max $\mathbf{2}$

Question Number	Answer	Mark
$\mathbf{2 ~ (a) (i i) ~}$	1. shape of (enzyme / pectinase) active site ; 2. fits pectin / does not fit cellulose / reference to specificity of enzymes ;	$\mathbf{2}$

Question Number	Answer	Mark
$\mathbf{2 ~ (b) (i) ~}$	1. increases the surface area ; 2. more \{substrate / pectin\} available / increases the number of \{enzyme-substrate complexes / collisions between enzyme / eq and substrate / eq\};	$\mathbf{2}$

Question Number	Answer	Mark
2(b)(ii)	1. hydrolysis uses up water ; 2. evaporation of water / eq ; 3. idea of same number of the \{enzyme / pectinase\} molecules but in less \{solvent/water\} ;	4. pectinase released from orange tissues/ eq ;
	5. correct reference to osmosis (into orange) ;	$\mathbf{m a x}$

Question Number	Answer	Mark
$\mathbf{3}$ (a)(i)	$\mathrm{P}=$ protein ;	
	Q = fat ; $\mathrm{R}=$ carbohydrate ;	

Question Number	Answer	Mark
$\mathbf{3}$ (a)(ii)	calculation (e.g. 3.3-1.0 or 2.3) x 8 (g) ; answer (18.4) ;	$\mathbf{2}$

Question Number	Answer	Mark
$\mathbf{3}$ (b)	1. more protein (in formula milk) ; 2. protein needed for growth / muscle deposition ; 3.\{protein / muscle\} \{heavier / more dense\} than same amount of carbohydrate / fat / eq ;	max $\mathbf{2}$

Question Number	Answer	Mark
$\mathbf{3}$ (c)	1. description of equation / body mass divided by height ${ }^{2}$; 2. look up on a chart to make judgement / over 30 (on BMI scale) ;	$\mathbf{2}$

Question Number	Answer	Mark
$\mathbf{4}$ (a)	(nitrogenous / organic) base / named base ;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{4}$ (b)	1. 8 double strands drawn; 2. 2 hybrid and rest all light DNA ;	$\mathbf{2}$

Question Number	Answer	Mark
$\mathbf{4}$ (c)	DNA polymerase / helicase / DNA ligase / primase / eq ;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{4}$ (d)	TCG AAT GGT ;	$\mathbf{1}$

Question Number	Answer	Mark
4 (e)	1. correct reference to description of gene mutation ; 2. change \{mRNA / codon / eq\}; 3.\{different / wrong / no\} amino acid included / stop codon ; 4.different / eq \{sequence of amino acids / primary structure of protein\} ; 5. different R groups ; 6. change bonding in protein / correctly named bond(s) ; 7. protein forms different \{secondary / tertiary / quaternary\} structure ; 8. different (3D) shape ;\quad5ax	

Question Number	Answer	Mark
$\mathbf{5}$ (a)(i)	$\mathrm{X}=$ aorta/ aortic arch ;	
$\mathrm{Y}=$ (left) ventricle / cardiac muscle ;		
$\mathrm{Z}=$ coronary artery / eq ;		

Question Number	Answer	Mark
$\mathbf{5}$ (a)(ii)	second box down on the left ;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{5}$ (a)(iii)	SAN / sino atrial node / pacemaker / eq ;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{5}$ (b)(i)	1. sequence of events from one beat to the next beat / eq ; 2. reference to \{contraction / systole\} and \{relaxation / diastole\};	3.correct detail of sequence e.g. atrial systole \rightarrow ventricular systole \rightarrow diastole / approx 30\% of time spent in systole and 70% in diastole ; 4. correct detail of electrical regulation of cardiac cycle/ eq;
$\mathbf{m a x}$		

Question Number	Answer	Mark
5(b)(ii)	1. left ventricle has \{more / thicker\} muscle / eq ; 2. blood from (left ventricle) has to divide between more capillaries / eq ; 3. left ventricle has to pump blood further / eq ;	\max $\mathbf{2}$

Question Number	Answer	Mark
5(b)(iii)	1. pressure increases as blood forced into ventricle during atrial systole;	2. pressure increases during (initial) ventricular systole/ eq ; 3. (due to) reducing volume of ventricle (causing pressure increase) ;
4. pressure starts to decrease due to blood into artery / loss of blood from ventricle ;	5. decreases during diastole / eq ; 6. (due to) increasing volume (of chamber) ;	max

Question Number	Answer	Mark
5 (c)	1. gender 2. smoking 3. genes / inheritance / eq 4. stress 5. high LDL level / LDL to HDL ratio / high blood cholesterol 6. reference to inappropriate diet such as high \{salt / fat / cholesterol / calorie\} intake / eq 7. high alcohol intake 8. obesity 9. lack of exercise / eq Notes: two correct answers needed for one mark	max 1

Question Number	Answer	Mark
$\mathbf{6}$ (a)	1. fluid - (phospholipid) molecules can move within phospholipid \{layer / monolayer\};	2. mosaic - \{proteins / glycoproteins / eq\} dotted throughout the \{membrane / bilayer / eq\};

Question Number	Answer	Mark
$\mathbf{6}$ (b)(i)	(act as) receptors / antigens;	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{6}$ (b)(ii)	1. two \{fatty acid / eq\}'tails' ; 2. glycerol ; 3. phosphate ;	$\mathbf{3}$

Question Number	Answer	Mark
$\mathbf{6}$ (c)	1. charged region (of cholesterol) only in line with hydrophilic phospholipid head / non-charged region only in line with hydrophobic phospholipid tails;	2. all within 1 monolayer ;

Question Number	Answer	Mark
$\mathbf{6}$ (d)	1. LDLs carry most cholesterol / HDLs more protein / eq ; 2. LDLs bind to receptors on cell membranes ; 3. if in high concentration, they overload receptors ; 4. results in high blood cholesterol ; 5. high risk of atheroma / atherosclerosis / eq ; 6. HDLs transport cholesterol to liver ; 7. cholesterol broken down therefore less risk of atherosclerosis / eq ;	$\mathbf{m a x}$

