UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

Specimen for 2007

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9700/04

BIOLOGY STRUCTURED QUESTIONS

	Page 2	Mark Schem		Syllabus	Paper
		GCE A LEVEL –	2007	9700	4
(a)		e of carbon dioxide given off; e of oxygen taken up	R amount	A moles	[1]
(b)	(i) 18H ₂ O; 18CO ₂ ;				[2]
	(ii) 18/26; = 0.69 -	- 0.70;	allow 2 marks fo	or correct ar	nswer [2]
(c)	greater than carbohydrat	substrate; 1 some anaerobic respiration/ref. t e 1/protein 0.9/fat 0.7 ;; metabolic processes using oxygen,	2 out of 3		[2 max]
(d)	record level change in ki repeat; open clip an ref. units; ref. to boiled	d to equilibrate; of fluid in manometer; nown time/ref. time; d reset level; d seeds as a control; e absorbs carbon dioxide given off; lation;			[4 max]
(e)		riment/ref. to comparison; ner manometer rose or fell;			[2 max]
(f)	ref. <u>named</u> e	temperature on <u>enzymes in respira</u> effect of temperature e.g. increased		gy/more sub	strate
	molecules w ref. to Q ₁₀ =	vith activation energy; 2			[2 max]
					Total: 15
(a)	stroma of ch	nloroplast;			[1]
(b)		ith (5C compound) RuBP; able 6C compound/forms 2 molecu /rubisco;	les of (3C) GP;		[2 max]
(c)	(ATP is) sou (reduced NA ref. use of A	DP and ATP; irce of energy; ADP is for) reduction of GP(PGA) to TP in regeneration of RuBP; e of phosphate/phosphorylation;	triose phosphate (TP)	;	[3 max]
(d)	due to reduc	mulates/goes up; ced combination with CO ₂ /AW;	in either RuBP	or GP, not b	oth
	_	own/not as much being formed; ersion to TP;			[2 max]
					Total: 8

	Syllabus	Paper
GCE A LEVEL – 2007	9700	4
(a) Either If genetic diagram used Penalise once for incorrect symbols		

orange scallop							
parents gametes	S°	S°Sb	S ^b	X	S°	S°Sb	S ^b
genotype	S° S°		$S^{o} S^{b}$		S° Sb		$S^b S^b$
phenotype			orange				black
black scallop		$S^b S^b$		X		$S^b S^b$	
parent							
gametes			(S^b		S^b)
genotype				$S^b S^b$			
phenotype				black			

If text explanation given

orange dominant to black (or converse); orange are heterozygous; (because) ref. 3:1 ratio; link data to ratio; black are homozygous;

because all offspring are black; [6]

separate orange scallops produced from first cross/test cross orange with black; some will produce only orange offspring; these will be homozygous for orange allele/pure breeding; [2max]

Total: 8

(a) Fungi; (accept fungus)

Protoctista; (accept Protista) Animalia; (accept animal)

Prokaryotae; (accept Prokaryote, bacteria)

Plantae; (accept plant)

[5]

(b) advantages

IDEA of simplicity;

easy to classify most organisms into the correct kingdom;

consistent with the traditional literature / AW;

Page 4	Page 4 Mark Scheme S		Paper
	GCE A LEVEL – 2007	9700	4

disadvantages

plant kingdom, is artificial / contains unrelated organisms / organisms that are not fundamentally similar;

ref. to prokaryotes and eukaryotes in the same kingdom;

ref. to other valid example of very differently organised organisms in the same kingdom; problem of what to do with protoctists / AW;

detail of difficulty with protoctists (e.g. Euglena is motile (animal-like) but autotrophic (plant-like); [4 max]

(c) (i) IDEA that biodiversity is about the variety of different kinds of organisms;
 BUT there are far more than hundreds of sorts of organisms / there are millions of species;

AND biodiversity is all kinds of organisms / not just animals; (independent points)

- maintaining biodiversity is important because
 IDEA of extinction is forever / once they are gone they are gone;
 Any two from it is, a source of genes for future use / medicines not yet known / foods not yet known / the means of retaining stability of ecosystems;;
- iii) argues that protected species can be successfully protected in artificial environments / zoos / botanic gardens / seed banks; argues that species can be successfully protected in controlled natural environments / conserved areas / national parks / AW; a specific, named, example of successful conservation (e.g. golden lion tamarins in zoos);

Mark straight through

[6 max]

Total: 15

5 (a) restriction (endonuclease) enzyme;

named example; e.g. EcoR1 specific, sequence of bases/point; ref. to sticky ends/exposed bases;

[3 max]

(b) sticky ends added to insulin gene;

ref. to complimentary base pairing/C and G bases pair up;

ref. H bonds;

(DNA) ligase;

formation of phosphodiester bond/seals sugar phosphate backbone;

[3 max]

(c) identical to human insulin (ref. to bovine/porcine insulin used previously);

ref. to reduced immune response/side effects;

cheaper to produce;

more rapid response;

pure/uncontaminated;

regular production not dependent on livestock;

ethical issues;

AVP; e.g. tolerance

[2 max]

	Page 5		Syllabus	Paper
		GCE A LEVEL – 2007	9700	4
				Total:
(a)	anaerobic / i glycolysis;	in absence of oxygen;		
	IDEA OF be produced;	cause if it was aerobic, no ethanol / only carb	on dioxide and water, w	ould be
	ethanol prod	amed sugar is respiratory substrate; luced; de produced;		[3 ma
		•		[· · · · · · · · · · · · · · · · · · ·
(b)		duct not contaminated; , more stable/less likely to be denatured;		
	enzyme	recovery easier;		
	AVP; e.	enzyme being reused; g. cost		[3 ma
	(ii) a omyla			_
	(ii) α amyla more ma	altose produce;		
	use of fi	gures;		[2 ma
				Total:
(a)	no petals;			
()	no nectaries			
	no scent pro large stigma			
	feathery stig			
	to trap poller stamens har	n; ng outside flowers;		
		on tall inflorescences;		[4 max
	pollen light a	and smooth;		[4 ma
(b)	self pollination	on		
	if plants wide	ely scattered;		
	effective in he.g. high mo	narsh environments; buntains max	x 2	
			~ 2	
	cross pollina genetic varia			
	ref. outbreed	ding;		
		ed every generation; e likely to survive environmental change; max	x 2	[4 ma
	•	34,		_
				Total:

- (ii) follicles in ovary; (both required)
- (iii) corpus luteum (in ovary);

pituitary + ovary + ovary = 1) [3]

(b) (i) FSH is an oestrogen agonist / AW;

Page 6	Page 6 Mark Scheme S		Paper
	GCE A LEVEL – 2007	9700	4

FSH stimulates follicles to develop (in ovary);

as follicles grow they contain more (granulosa) cells;

(granulosa) cells secrete oestrogen;

oestrogen inhibits FSH production:

peak in oestrogen stimulates LH release;

LH triggers ovulation;

ref. hormones circulate / reach target organs, in blood;

[4 max]

(ii) rise / peak in oestrogen (before ovulation);

causes proliferation / growth of uterus lining;

rise / peak in progesterone (after ovulation);

maintains uterus lining:

IDEA OF transforms uterus lining from proliferative to secretory;

Drop in progesterone, causes uterus lining to break down / initiates menstruation; correct ref. figures e.g. oestrogen peak at 10 days / progesterone peak at 21 days; [4 max]

ref. endometrium:

(c) (i)
$$\frac{4.0 - 2.2 \, cm^3}{4y}$$
 = 0.45; cm³ per year; (accept 1.8 cm³ per 4 years for 1 mark) [2]

(ii)
$$\frac{0.45}{2.2}$$
 = 0.20 or 0.2;; (accept errors carried forward) [2]

Total: 15

9 Explain how a synapse functions.

[9]

(b) Describe the role of glucagon in regulating blood glucose.

[6]

- (a) depolarisation/action potential;
 - 2 of presynaptic membrane/synaptic knob;
 - opening calcium ion channels;
 - calcium ions in;
 - vesicles containing transmitter/acetylcholine;
 - fuse with membrane;
 - contents emptied into synaptic cleft/exocytosis;
 - transmitter/acetylcholine diffuses across synaptic cleft;
 - transmitter/acetychloine binds to receptor; R protein channel
 - 10 on post synaptic membrane;
 - 11 Na⁺ channels open/NA⁺ enters;
 - 12 depolarises post synaptic membrane;
 - 13 action potential set up/impulse transmitted
 - 14 breakdown/hydrolysis of transmitter/acetylcholine by enzyme/cholinesterase; [9 max]

Page 7	Mark Scheme S		Paper
	GCE A LEVEL – 2007	9700	4

- (b) 15 when blood glucose levels low;
 - 16 glucagon released from alpha cells (in pancreas);
 - 17 (acts on) liver (cells);
 - 18 breakdown of glycogen to glucose;
 - 19 use of fatty acides in respiration; R fats
 - 20 production of glucose from other compounds/fats/amino acids/gluconeogenesis;
 - 21 liver releases glucose into blood;
 - 22 glucose levels rise/return to normal;
 - 23 switching off glucagon secretion;
 - 24 antagonistic to insulin;

[6 max]

Total: 15

[6 max]

- **10** (a) 1 ref. continuous/discontinuous variation;
 - 2 genetic/inherited variation;
 - 3 variation in phenotype/characteristics/AW;
 - 4 (can be due to) interaction of genotype and environment;
 - 5 e.g. of characteristic that influences survival;
 - 6 ref. intraspecific competition/struggle for existence;
 - 7 those with favourable characteristics survive/AW;
 - 8 pass on favourable characteristics to offspring;
 - 9 those with disadvantageous characteristics die;
 - (b) 10 ref. to definition of species;
 - 11 ref. allopatric;
 - 12 geographical isolation;
 - 13 ref. to examples e.g. islands/lakes/mountain chains/idea of barrier;
 - 14 ref. to example organism;
 - 15 ref. to populations prevented from interbreeding;
 - 16 isolated populations subjected to different selection pressures/conditions;
 - 17 over time sufficient differences to prevent interbreeding;
 - 18 ref. sympatric;
 - 19 ref. to reproductive isolation;
 - 20 ref. behavioural barriers (within a population);
 - 21 e.g. day active/night active;
 - 22 correct ref. to gene pool;
 - 23 change to allele frequencies;

[9 max]

Total: 15