UNIT 3 Enzymes and Genetic Control

Timing This unit comprises approximately 20% of the learning material in AS Biology, and about 10% of the learning material in a complete Biology A Level learning programme.

Recommended Prior Knowledge Students will need to have studied Units 1 and 2 before beginning this Unit

Context An understanding of enzyme function will be required in order to understand how DNA controls cell function. DNA and protein synthesis will be revisited if students continue to A2 level.

Outline This Unit builds on knowledge of protein structure from Unit 2, in describing and explaining enzyme activity. There are many opportunities for practical work, and this provides an excellent opportunity for students to develop their practical skills, including their ability to plan and evaluate investigations. DNA and protein synthesis leads on from work in Unit 2 on molecules. There are good opportunities within this Unit for students to develop their practical skills relating to Assessment Objectives in Group C (Experimental skills and investigations) including the design and evaluation of their own investigations. Try to ensure that each student works alone and under time pressure on some occasions, as this will help to prepare for the practical examination(s).

>

Reinforcement and formative assessment It is recommended that, towards the end of the time allocated to the unit, time be taken to permit reinforcement of the learning that has occurred. This might take the form of structured revision and questions, perhaps making use of online question banks such as http://www.learncie.org.uk/ or http://exam.net/public/misc/pub_home.asp.

Formative assessment could take the form of student self-marked minitests, taking just 10 or 15 minutes for students to do and then mark for themselves, perhaps using questions from the banks above – discussing the correct answers as a whole class. At the end of the unit, there should be a much larger formative assessment test, using appropriate past-examination and similar style questions, taking a lesson to do, and a lesson to provide feedback after marking by the teacher.

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
C(a) (b)	explain that enzymes are globular proteins that catalyse metabolic reactions; explain the mode of action of enzymes in terms of an active site, enzyme-substrate complex, lowering of activation energy and enzyme specificity Learning activities - use paper cut out models, simulations, and whole class discussion to develop understanding of mode of action of enzymes, and the importance of complementary shape and fit - give a brief written description and annotated 'boulder analogy' graph to make the point that although the energy content of substrate and products is not changed, the reaction pathway follows a lower energy course	Use questioning to check students' knowledge of enzymes; it is likely that some will associate them only with digestion, and it is important to correct this mistake at an early stage. Revise the meaning of the term 'catalyst'. Ensure that students understand that there are many types of catalyst other than enzymes. Students will have already covered protein structure in Unit 2, so it should be a relatively small step forward to explain enzyme structure, including the active site. Emphasise the crucial role of the R groups of amino acids at this site in binding with the substrate.	http://www.bbc.co.uk/educ ation/asguru/biology/02bio logicalmolecules/01protein s/11enzymes/index.shtml Descriptions and explanations of how enzymes work, including a simple animation	All AS and A level texts cover this topic thoroughly.

the reaction mixture. Samples have to	
be taken at regular intervals and tested	I
with iodine solution. It is more difficult	I
to produce quantitative results using	I
this method, but it can be done using a	I
colorimeter.	I

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
C(d)	investigate and explain the effects of	Before beginning this work, it is worth	http://www.ncbe.reading.a	Practical Advanced
	temperature, pH, enzyme	explaining that what should ideally be	c.uk/NCBE/PROTOCOLS	Biology, King et al, has
	concentration and substrate	measured is the initial rate of enzyme	/menu.html	protocols, background
	concentration on the rate of enzyme-	activity. Measuring time taken for	Introduction to pdf	information and questions
	catalysed reactions, and explain	complete removal of substrate can	downloads. Some	covering several enzyme
	these effects	sometimes lead to confusion, and is	downloadable booklets	practicals, as well as
		completely unsuitable if you are trying	with a wide range of	numerous ideas for
	Learning activities	to measure the effect of substrate	enzyme-based practical	individual planning.
	 Planning and carrying out an 	concentration (it gives seemingly	activities. For example,	
	investigation into the effect of	'contradictory' results, because with	http://www.ncbe.reading.a	Comprehensive Practical
	temperature on rate of an enzyme	more substrate it actually takes longer	c.uk/NCBE/PROTOCOLS	Biology, Siddiqui, also has
	catalysed reaction (with control	for it all to disappear, even though the	/juice.html	protocols for these
	of other variables) e.g. the yeast	rate of reaction is faster!).	links to several downloads	investigations as does
	catalase experiment introduced in	This is a good opportunity to improve	for several fruit juice	Advanced Biology
	C(c)	students' skills of planning an	based practicals.	principles and
	 Carrying out an investigation into 	investigation in which several variables		applications. Study Guide
	the effect of pH on rate of an	need to be controlled. You could	http://www-	Clegg and Mackean
	enzyme catalysed reaction (with	perhaps discuss with the whole group	saps.plantsci.cam.ac.uk/wo	
	control of other variables) e.g.	the design of one experiment which is	rksheets/ssheet14.h	D: 6 . 1 12 E
	protease (trypsin) digesting	then carried out by the whole class, and	<u>tm</u>	Biofactsheet 43: Factors
	protein in exposed film	later allow groups, pairs or individuals	An interesting experiment	affecting enzyme activity
	 Contribute to question and 	to plan and carry out their own	using phosphatase, as well	
	answer / whole class discussion	investigations.	as ideas for students to	
	followed by written explanation		design their own	
	and drawing of annotated graphs	Students often confuse the experiment	investigations.	
	showing the key impact of;	where they follow the course of an	1.44//1.1.1	
	o rate of collisions (e.g.	enzyme-catalysed reaction with the	http://www.biology4all.co	
	at low temperatures,	effect of increasing substrate concentration on the rate of a reaction.	m/resources_library/1.asp	
	in relation to	This is probably because the curves are	A protocol for an investigation using	
	concentration of	the same shape.	immobilised invertase	
	enzyme and substrate	me same snape.	Immounised invertase	
	(at low substrate			

	entrations	The examplar practical
o hydro	ogen bonding,	lesson on the CIE Teacher
tertiar	ry structure,	Support website at
shape	of active site	http://teachers.cie.org.uk
and co	omplementary	
fit of s	substrate (e.g.	
at high	h temperatures	
and in	relation to pH	

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
C(e)	explain the effects of competitive and non-competitive inhibitors on the rate of enzyme activity Learning activities - investigate the effect of a non-competitive inhibitor (solutions of lead nitrate, copper sulphate or silver nitrate) on an enzyme-catalysed reaction (e.g. protease (trypsin) on exposed film or fruit oxidase enzymes and browning of fruit) - be involved in a question and answer / whole class discussion, leading to individual written explanations of the effect of competitive inhibitors (act at active site, reversible, overcome by high substrate concentrations, occupation of active site by inhibitor reduces collisions) and non-competitive inhibitors (act away from active site, may be reversible or irreversible, reduce maximum rate irrespective of substrate concentration, change the shape of the whole enzyme molecule including the active site so the substrate no longer fits)	Only an outline is required here. It is best to restrict discussion to reversible inhibitors that act either at the active site (competitive) or elsewhere (noncompetitive). If the students carry out an investigation with an irreversible inhibitor then they should be made aware of this type of inhibition.	http://www-saps.plantsci.cam.ac.uk/worksheets/activ/prac2.htm A protocol for an interesting investigation into a non-competitive inhibitor (banana catechol oxidase and lead) To show that an inhibitor is competitive is difficult because students need to make up separate reaction mixtures with different concentrations of the substrate.	

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
F(a)	describe the structure of RNA and	You may like to begin this topic with a	http://www.dnaftb.org	All AS and A level text
	DNA and explain the importance of	discussion about exactly what DNA	This deals with many	books cover these topics
	base pairing and hydrogen bonding	does, before embarking on its structure.	aspects of DNA and	very thoroughly.
	. <u> </u>	Ask students to recall what they know	genetics. Within the	
	Learning activities	of protein structure, and then explain	section Molecules of	
	 label pre-existing diagrams of 	that DNA encodes instructions for the	Genetics are sections	
	DNA to show nucleotides,	sequence in which amino acids are	relevant to this Unit.	
	phosphate, deoxyribose, sugar-	linked together. Then consider the		
	phosphate backbone, adenine,	requirements for such a molecule - how		
	thymine, cytosine, guanine,	the information might be carried, the	http://www.bbc.co.uk/educ	
	hydrogen bonds, base pairing	need for stability, and the need to be	ation/asguru/biology/04ge	
	between A and T, and between C	able to replicate so that the information	nesgenetics/index.shtml	
	and G	can be passed on to daughter cells.	Clear descriptions of DNA	
	take a diagram of single strand of		and RNA structure, with	
	DNA and add to it appropriate	The history of the discovery and	animations.	
	drawings of nucleotides to create	understanding of DNA makes		
	a second strand	fascinating reading. You might like to		
	a second strandquestion and answer / whole	ask students to research this.	http://accessexcellence.org	
	class discussion on the relative		/AB/GG/	
	strength of the bonds that hold	Take care that during your teaching you	Images of RNA and DNA	
	the sugar-phosphate backbone	do not accidentally cause confusion	structure.	
	together compared to those that	(e.g. between thymine and thiamine, or		
	hold together the two strands of	between adenine and adenosine - these	http://gslc.genetics.utah.ed	
	DNA	are very common errors, or between	<u>u/units/activities/wheatger</u>	
		nucleotides and amino acids – for	<u>m</u>	
	make a summary table of the similarities and differences	example by stating that DNA is	A simple protocol for	
		composed of amino acids – a very	extracting DNA.	
	between DNA and RNA	common wrong answer in		
	- make a summary table of	examinations). It is a good idea not to		
	correctly matched pairs of pieces	tell students directly that they will find		
	of information (e.g. thymine =	these things confusing. It is far better		
	base only found in DNA,	to give them access to the information		
	thiamine = vitamin; adenine =	-		

base found in DNA and RNA,	correctly (e.g. from books), and ask	
adenosine = the A in ATP;	them to write out correct meanings /	
nucleotide = monomer / building	matches	
block of DNA and RNA, amino		
acid = monomer / building block		
of protein)		

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
F(b)	explain how DNA replicates semi-	If you have already covered mitosis,	http://www.bbc.co.uk/educ	All AS and A level text
	conservatively during interphase	then you could begin this topic by	ation/asguru/biology/04ge	books cover these topics
		reminding students of the necessity for	nesgenetics/02replication	very thoroughly.
	Learning activities	chromosomes to divide before mitosis	mitosis/index.shtml	
	 use computer simulations and 	occurs. Try to ensure that they make	Explanation and	
	whole class discussion / question	connections between mitosis,	animations of DNA	
	and answer to build	chromosomes and DNA: each	replication.	
	understanding of DNA	chromosome contains a DNA molecule.		
	replication	DNA replication results in two identical	http://www.accessexcellen	
	use photocopies / jigsaw puzzles	DNA molecules, one in each identical	ce.org/AB/GG/dna_replica	
	of DNA diagrams and matching	chromatid.	ting.html	
	nucleotides to simulate DNA	Animations can be very helpful in	Diagram and notes on	
	replication	aiding understanding of DNA	semi-conservative	
	Topicution	replication. Students should understand	replication	
		the meaning of the term 'semi-		
		conservative'. There is no need to go		
		into details of any other possible		
		methods of replication, nor of		
		experiments such as those of		
		Meselsohn and Stahl - though these		
		could form the basis of interesting		
		questions to test students'		
		understanding.		

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
F(c)	state that a gene is a sequence of	It is a good idea to give students an	http://www.bbc.co.uk/educ	All AS and A level text
(d)	nucleotides as part of a DNA	overview of the way in which DNA	ation/asguru/biology/04ge	books cover these topics
(f)	molecule, which codes for a	codes for protein structure, before	nesgenetics/index.shtml	very thoroughly.
	polypeptide;	going into the details of how this	has information about the	
	describe the way in which the	process occurs. The important point to	nature of the genetic code	
	nucleotide sequence codes for the	get over here is that the sequence of		
	amino acid sequence in a	nucleotides in part of a DNA molecule	http://www.kumc.edu/gec/	
	polypeptide;	codes for the sequence of amino acids	has links to lots of sites	
	explain that, as enzymes are	in a protein.	that have information	
	proteins, their synthesis is controlled		about the human genome	
	by DNA	You can also get them to think back to	project, genetic code and	
		what they know about protein structure	many other related topics	
	Learning activities	and function, and remind them how the		
	- whole class discussion / question	function of a protein - including		
	and answer to build	enzymes - depends on the sequence of		
	understanding of the triplet code	amino acids within it.		
	use a DNA dictionary to work			
	out, from specific nucleotide base	An error that frequently appears in		
	sequences, specific amino acid	answers to examination questions on		
	sequences, including normal and	this topic is confusion between		
	sickle-cell haemoglobin	nucleotides and amino acids. It is very		
	make a flow diagram, linear	important to reinforce the correct		
	sequential notes or annotated	relationship between nucleotides and		
	diagram showing that: DNA	DNA / RNA, and between amino acids		
	codes for the amino acid	and protein. A learning methodology		
	sequence in protein, which is the	called 'error-free learning' shows that		
		when students 'guess' or are given		
	primary structure; primary structure determines where the	incorrect matches, it is the incorrect		
		matches that they learn, so they must		
	protein chain spirals and folds	<i>never</i> be given incorrect matches as a		
	(secondary and tertiary	learning tool (see also F(a)).		
	structure); secondary and tertiary			
	structure determines the shape;			

and shape (e.g. of active site, specific channel or receptor site) determines the function		

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
F(e)	describe how the information on DNA is used to construct polypeptides, including the role of messenger RNA, transfer RNA and the ribosomes Learning activities - whole class discussion / oral question and answer, animations and reinforcement written questions to build understanding of the genetic code, the role of mRNA and transcription - revisit the DNA sequences met in F(c),(d)&(f), plus decode new DNA sequences, with only a mRNA codon dictionary, transcribing from DNA to mRNA, and then working out from the dictionary, the sequence of amino acids - whole class discussion / oral question and answer, animations and reinforcement written questions to build understanding of translation and the role of tRNA and ribosomes. - Use the DNA sequence for the first 6 amino acids in drawing a comprehensive whole page annotated diagram to show transcription and translation – the	It is very important to ensure that students understand the overall sequence of events here, before they get bogged down in the details of transcription and translation. Ensure that they understand the role of mRNA in carrying a copy of the information from DNA to the ribosome, and the role of tRNA in translating this information into the sequence of amino acids that are strung together. Incidentally, trans Cription comes before transLation alphabetically as well as in protein synthesis. Animations can be very helpful in describing how translation and transcription take place.	http://www.bbc.co.uk/education/asguru/biology/04genesgenetics/index.shtmlgood information on this topic, with excellent interactive animations aimed at AS level students http://www.pbs.org/wgbh/aso/tryit/dna/the DNA workshop activity on protein synthesis places the student inside the cell. There are also links to other sites on, for example, Crick, Franklin and some relevant applied research.	Biofactsheet 22: Protein synthesis I – nucleic acids Biofactsheet 49: Protein synthesis II – mechanisms All AS and A level text books cover these topics very thoroughly.

ribosome (not to scale) can be provided by the teacher		
--	--	--