UNIT 2 Molecules and Membranes

Timing This unit comprises approximately 20% of the learning material in AS Biology, and about 10% of the learning material in a complete Biology A Level learning programme.

Recommended Prior Knowledge Students will need some background knowledge in chemistry before embarking on this Unit. They should understand the terms 'atom', 'molecule' 'electron' and 'ion'. They should also have a basic understanding of covalent and ionic bonding, and of molecular and structural formulae. They should be able to write and understand simple chemical equations. Some knowledge of energy changes (potential energy and bond energy) would be helpful. They should understand the kinetic theory, and be able to use it to explain diffusion in solutions.

Context This Unit could be studied either before or after Unit 1, Cells and Cell Division. It provides essential material that students will constantly refer to when studying all future Units in their AS course. An understanding of the structure, roles and behaviour of biological molecules is fundamental to an understanding of all physiological processes, as well as genetics and some aspects of ecology.

>

Outline The Unit begins with the properties and roles of water in relation to living organisms; this introduces the concepts of hydrogen bonding and solubility, which will be needed in order to understand the properties of biological molecules. Three of the main groups of biological molecules - carbohydrates, fats and proteins - are studied, with an emphasis on relating their molecular structures to their properties and functions in living organisms. This leads on to an understanding of the structure and functions of biological membranes.

There are good opportunities within this Unit for students to develop their practical skills relating to Assessment Objectives in Group C (Experimental skills and investigations) including the design and evaluation of their own investigations. Try to ensure that each student works alone and under time pressure on some occasions, as this will help to prepare for the practical examination(s).

Note: the structure and function of polynucleotides (DNA and RNA) is covered in a later Unit.

Reinforcement and formative assessment It is recommended that, towards the end of the time allocated to the unit, time be taken to permit reinforcement of the learning that has occurred. This might take the form of structured revision and questions, perhaps making use of online question banks such as http://www.learncie.org.uk/ or http://exam.net/public/misc/pub_home.asp.

Formative assessment could take the form of student self-marked minitests, taking just 10 or 15 minutes for students to do and then mark for themselves, perhaps using questions from the banks above – discussing the correct answers as a whole class. At the end of the unit, there should be a much larger formative assessment test, using appropriate past-examination and similar style questions, taking a lesson to do, and a lesson to provide feedback after marking by the teacher.

Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
	Before beginning this Unit, it is	http://old.jccc.net/~pdecell	Advanced Biology, Jones
	recommended that you check the	/chemistry/chemtext.html	and Jones, CUP, has an
	background knowledge of students, as	is an excellent online basic	Appendix covering the
	described in 'Recommended Prior	chemistry tutorial designed	basic chemistry required
	Knowledge' at the beginning of this	for biologists	for this Unit.
	Unit.	_	

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(i)	describe and explain the roles of water in living organisms and as an environment for organisms Learning Activities - question and answer session / whole class discussion - looking up key terms in the index of a variety of Biology books - brief written and diagrammatic explanation of polar/non-polar and hydrogen bonding and its importance	The way in which you deal with this topic should be tailored to the background of your students. Those with a strong chemistry background are likely to have little trouble with understanding the concepts involved, while others may find this very difficult and will need a slow and steady approach that keeps things as simple as possible. It is a good idea to make cross-references to other areas of biology, such as cell biology, during this section so that students gain a wide perspective on the roles of the biochemicals they study in this Section/Unit. You should aim to give students a sound but simple description of hydrogen bonding, and use this to explain why water has a relatively high boiling point, high specific heat capacity, high surface tension and high latent heat of vaporisation. Its solvent properties should also be discussed -	http://people.pwf.cam.ac.uk/mjas2/Documents/BYB Water.pdf has information about the range of functions of water in a text document http://www.farmweb.au.com/h2o/h2life.html has an interesting series of articles and other extension materials suitable for interested students	Other resources The properties of water are fully described and explained in <i>Biological Sciences</i> , ed Soper, CUP and in <i>Advanced Biology</i> , Jones and Jones, CUP. Biology, Jones. Fosbery, Taylor and Gregory, gives a briefer treatment of this topic. Biofactsheet 30: The biological importance of water Biofactsheet 78: Chemical bonding in biological molecules
		<u> </u>		

A discussion on hydrogen bonding could be extended to highlight its important in protein structure and DNA.	
Emphasise role of water as important solvent in biological systems - introduce concept of 'polar' and 'non-polar' here.	

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
3(b)	describe the ring forms of alpha and	All students will be familiar with the	It is possible to view	Molecular models are
c)	beta glucose	term 'carbohydrate', but are likely to	models of molecules on	available from suppliers,
	describe the formation and breakage	know little about their molecular	line at Botany on-line:	such as Philip Harris
	of a glycosidic bond	structure. Glucose is used here as an	http://www.biologie.uni-	
		example of a monosaccharide; an	<u>hamburg.de/b-</u>	Biology, Jones, Fosbery,
	Learning activities	understanding of its alpha and beta	online/e00/contents.htm	Taylor and Gregory, like
	making and using molecular	forms will be needed in order to		other texts, uses diagrams
	models (there are some	understand polysaccharide properties		to illustrate these
	inexpensive drinking straw based	later.		structures and processes
	models as well as plastic sphere /	An explanation of how a glycosidic		
	bond models)	bond forms and can be broken can lead		
	 numbering the atoms on existing 	to an understanding of the terms		
	drawings of glucose molecules,	'monosaccharide' and 'disaccharide' -		
	and completing incomplete	note that these terms are not required		
	diagrams by adding OH and H	by the syllabus, but may be useful to		
	groups	candidates nevertheless. This also		
	practising drawing α and β	introduces the terms 'condensation' and		
	glucose with all the atoms, and	'hydrolysis' for the first time.		
	omitting the carbon atoms, as	If you have access to molecular		
	well as diagrams summarising	modelling materials, students may		
	glycosidic bond formation (e.g.	enjoy and learn from making models of		
	to form maltose)	glucose molecules and their		
	to form manose)	combination to form maltose.		

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(a)	carry out tests for reducing and non-	I would suggest carrying out these tests	http://jchemed.chem.wisc.	Practical Advanced
	reducing sugars (including semi-	on solutions of different sugars first to	edu/JCESoft/CCA/CCA5/	Biology, King and Reiss,
	quantitative use of the Benedict's	identify reducing and non-reducing	MAIN/10RGANIC/ORG1	describes these techniques
	test)	sugars. I would not call them 'food	8/TRAM18/B/MENU.HT	(though not the semi-
		tests'.	<u>M</u>	quantitative tests).
	Learning activities	Students could first carry out the	has illustrations of simple	
	– use Benedict's test on water, pure	Benedict's test for reducing sugars on a	benedict's test, including	Comprehensive Practical
	glucose, fructose, maltose,	range of food substances; this will be	negative test for sucrose	Biology, includes a
	lactose, sucrose, protein	revision for most of them. You could	before hydrolysis.	protocol that describes a
	solutions, starch suspension, and	then explain to them that this test does		semi-quantitative test.
	vegetable oil	not work for sucrose (the only non-	http://www.mrothery.co.u	See also <i>Biological</i>
	use Benedict's test on a range of	reducing sugar they will come across)	k/module1/Mod%201%20t	Science, ed Soper, pub.
	natural biological materials (e.g.	and ask them to suggest how they	echniques.htm	CUP.
	fruits, tubers)	might be able to adapt the test to test	gives a straightforward	
	- use Benedict's test on water, and	for sucrose - encourage them to draw	description of benedict's	Advanced Biology
	on solutions containing sucrose,	on their knowledge of glycosidic bonds	test for reducing and non-	principles and
	before and after hydrolysis in hot	- before carrying out this test on a	reducing sugars.	applications. Study Guide
	acid and neutralisation	sucrose solution. Recommend using		Clegg and Mackean, and
		AR sucrose, not LR or cane sugar.	http://www.mrothery.co.u	Biology, Jones, Fosbery,
	- describe the tests made and the	You could then set them the task of	k/bio_web_prac/practicals/	Taylor and Gregory,
	results obtained	determining which of three solutions	2Food%20Tests.doc	also describes suitable
	- use qualitative Benedict's	contain glucose only, sucrose only and	has clear protocols	ways of carrying out these
	solution in a semi-quantitative	a mixture of both sugars. It is well		tests.
	way to determine the	worth giving them the opportunity to	http://www.biotopics.co.u	
	approximate concentration of	work this out for themselves.	k/as/cho.html	
	glucose in some solutions by	Practical work should also include	protocol including tests for	
	colour or by mass of precipitate	determining the approximate	reducing and non reducing	
		concentration of an unknown glucose	sugars, and some points to	
		solution. Students will first need to	ponder - maybe a useful	
		carry out the Benedict's test (controlling	starting point.	
		all variables) on a range of solutions of		
		known concentration, and then compare		

	the depth of colour or the mass of	
	precipitate obtained when testing the	
	unknown.	

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
(d)	describe the molecular structure of starch (amylose and amylopectin), glycogen and cellulose and relate these structures to their functions in living organisms Learning activities - get students to handle strings of beads on wire or to join hands and pretend to be 'long, strong chains of β glucose residues' (cellulose), 'compact, energetic spirals of α glucose residues' (amylose), and 'compact, branched, amorphous, energetic shapes of α glucose residues' (amylopectin and glycogen) – the concrete experiences help to learn a difficult abstract idea - make brief written and diagrammatic explanations of the relationship between structure and function	Build on the students' understanding of hydrogen bonding, covered in B(i), to explain how these molecules are held in shape. Explain advantage of branching of amylopectin in providing large number of 'ends' to attach and detach glucose units	http://chemed.chem.purdu e.edu/genchem/topicrevie w/bp/1biochem/carbo5.ht ml has a comprehensive review of carbohydrate structure and function, useful as a source of extension materials http://www.calfnotes.com/ pdffiles/CN102.pdf material on the structure and function of these polysaccharides in the context of calf nutrition.	Most AS and A level textbooks cover this material thoroughly. Biofactsheet 39: Carbohydrates: revision summary Biology, Jones, Fosbery, Taylor and Gregory, like other texts, uses diagrams to relate these structures to their functions

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(e)	describe the molecular structure of a triglyceride and a phospholipid and relate these structures to their functions in living organisms Learning activities - make very simple paper cut out models of triglycerides to illustrate the non-polar exposed fatty acids, and phospholipids to show the very different ends of the molecule. - the cut out phospholipids can be laid out side by side to form a bilayer (keep the paper models for use in D(a)) - examine diagrams of triglycerides, describing evidence that makes them good energy stores (lots of carbon-carbon bonds, highly reduced so energy can be released by oxidation, insoluble in water so can be localised in the organism)	The insolubility of triglycerides, and the behaviour of phospholipids when in contact with watery liquids, should be related to the absence or presence of polar groups; once again, you should refer back to the earlier work on water to help to explain this. It is suggested that you do not go into any detail about saturated and unsaturated fatty acids. You may like to describe the formation of bilayers by phospholipids at this stage, or to deal with this later, in topic D(a). Students should be able to describe a range of functions of lipids in organisms, relating each of these functions to their molecular structure.	http://ntri.tamuk.edu/cell/lipid.html has a nice illustrated review, useful as a source of material	Biofactsheet 42: The structure and function of lipids Biofactsheet 74: The structure and biological functions of lipids Biology, Jones, Fosbery, Taylor and Gregory, like other texts, uses diagrams to relate these structures to their functions

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(a)	carry out the emulsion test for lipids	Students may already know this test	http://www.mrothery.co.u	Practical Advanced
		from earlier work. They can now use it	k/bio_web_prac/practicals/	Biology, King and Reiss,
	Learning activities	to investigate the occurrence of lipids in	2Food%20Tests.doc	and Comprehensive
	use the ethanol emulsion test	a selection of fruits and seeds.	has clear protocols	Practical Biology Siddiqui
	with vegetable oil and yellow-		including this one.	and <i>Biology</i> , Jones,
	dyed water			Fosbery, Taylor and
	use the ethanol emulsion test			Gregory include suitable
	with crushed fruits and seeds			tests.

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(f)	describe the structure of an amino	Students do not need to know the	http://www.bbc.co.uk/educ	The molecular structure
(g)	acid and the formation and breakage	structures of different amino acids, but	ation/asguru/biology/02bio	and functions of
(h)	of a peptide bond; explain the	they do need to understand that the R	logicalmolecules/01protein	haemoglobin and collagen
(11)	meaning of the terms <i>primary</i>	(residual) group can take many	s/index.shtml	are thoroughly covered in
	structure, secondary structure,	different forms. There is no need to go	The BBC AS Guru web	Biology, Jones, Fosbery,
	tertiary structure and quaternary	into any detail at all about how	site has interactive	Taylor and Gregory.
	structure of proteins and describe	individual amino acids behave in	animations of the	Taylor and Gregory.
	the types of bonding (hydrogen,	solution; the behaviour of terminal	formation and breakage of	If you wanted to take this
	ionic, disulphide and hydrophobic	amine and carboxyl groups in a protein	peptide bonds.	work further, the use of
	interactions) that hold the molecule	molecule is of little importance	peptide bolids.	paper chromatography to
	in shape; describe the molecular	compared with the behaviour of the R		analyse the amino acids in
	structure of haemoglobin as an	groups.		albumen is described in
	example of a globular protein, and	groups.		Practical Advanced
	of collagen as an example of a	You could teach the various levels of		Biology, King et al, and in
	fibrous protein and relate these	protein structure with reference to		Comprehensive Practical
	structures to their functions	haemoglobin. Its globular shape and		Biology, Siddiqui.
		solubility (which can be related to the		
	Learning activities	positions of polar R groups on the		Advanced Biology
		outside of the coiled molecule) are		principles and
	examine diagrams of typical	typical of metabolically active proteins.		applications. Study Guide
	amino acid and simple amino	The structure and function of collagen		Clegg and Mackean also
	acids, to identify the R group and	can be contrasted with this.		describes a method for
	the part common to them all, as			analysing amino acids
	well as the amine group and	Note: students often think that to have		using chromatography
	carboxylic acid group	quaternary structure proteins must be		
	- draw simple diagrams of the	composed of 4 polypeptides.		Biofactsheet 80: Structure
	structure of a typical amino acid,	r Jr Jr Jr		and biological functions of
	and to show condensation and			proteins.
	hydrolysis of peptide bonds			*
	- question and answer / whole			
	group discussion followed by			
	written and diagrammatic			
	explanation of protein structure			

and the role of bonding in		
determining shape and stability.		
 individual students or pairs to 		
make an A4 poster showing the		
role of one kind of bonding in		
one level of protein structure, so		
that the whole group covers all		
types of bonding and all levels of		
structure		

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(a)	carry out the biuret test for proteins	Students are likely to have come across	http://www.mrothery.co.u	Advanced Biology
		this test already, from earlier work.	k/bio_web_prac/practicals/	principles and
	Learning activities	They need this learning reinforced, and	2Food%20Tests.doc	applications. Study Guide
	Use the biuret test on a solution	they need any confusions corrected.	has clear protocols	Clegg and Mackean
	of egg white, skimmed milk,		including this one.	has a flow chart to show
	chicken or tofu and water			how the different tests,
				such as the biuret test, can
				be used to identify
				unknown substances or
				substances in a mixture.
				Practical Advanced
				Biology, King and Reiss,
				and Comprehensive
				Practical Biology Siddiqui
				and Biology, Jones,
				Fosbery, Taylor and
				Gregory include suitable
				protocols for this test.