MARK SCHEME for the May/June 2008 question paper

9700 BIOLOGY

9700/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme	Syllabus	Paper	
				GCE A/AS LEVEL – May/June 2008	9700	04	
1	(a)	higł	ner po	r population (growth), higher (rate of) deforestation / ora ;			
		ref.	2 na	med countries (or letters) and paired figs ;			
		ref.	Vietr	nam (not fitting trend);		[2 max]	
	(b)	(i)	1	ref. variety of, species / organisms / plants / animals;			
	()	()		variation within species / AW;			
				genetic diversity between species / AW ;		[2 max]	
		(ii)		nomic			
		()		(some, species / plants / animals may have) uses in the	e future ·		
				medical uses / example ;	o lataro ,		
				resource material; e.g. wood for building / fibres for clo	othes		
				food (for humans) / agriculture ; tourism / example ;			
				ref. maintain gene pool / genetic diversity ;			
				prevention of natural disasters ;			
			8	AVP ; e.g. ref. biological control (predators / parasites	reduce pest pop	ulations)	
						[4 max]	
						[Total: 8]	
		_	,				
2	(a)			creatic) duct ; A capillary		101	
		В –	Islet	of Langerhans / $\alpha \; \underline{\text{and}} \; \beta$ cells ;		[2]	
	(b)	αα	ells /	eta cells / islets / B , secrete, hormones / glucagon / insuli	n;		
		into	the t	blood / not into a duct ;		[2]	
	(c)	1	incre	eases permeability of membrane to glucose / increases	glucose uptake	•	
		2	incre	eases respiration of glucose ;			
		3	(incr	eases), conversion of glucose to glycogen / glycogene	sis ;		
		4	(incr	eases) protein / fat, synthesis ;		[2 max]	
	(d)	1	it is i	identical to human insulin / ora ;			
		2	work	s better than non-human insulin / more rapid response،	;		
		3	no /	fewer, rejection problems / side effects / allergic reaction	ons;		
		4	ref. t	to ethical / moral / religious, issues ;			
		5	chea	aper to produce in large volume / unlimited availability ;	R cheap to pr	roduce	
		6	less	risk of, transmitting disease / infection;			
		7		d for people who have developed intolerance / allergic <u>nimal</u> insulin ;	reactions / immu	ne responses [2 max]	

Page 3			5	Mark SchemeSyllabusPapeGCE A/AS LEVEL – May/June 2008970004					
				· · · · · ·		• -			
	(a)	(i)	1	anthers, versatile / loosely attached / attached at one	•	, .			
			2	anthers / stamens / tassels / androecium, on long filan	-	(of flower);			
			3	anthers / stamens / tassels / androecium, above leave	s;				
			4	stigmas / silks, hang out (of flower) ;					
			5	stigmas, large surface area / hairy / feathery / branche	ed, (to catch polle	en); [3 max]			
		(ii)	<i>adv</i> 1	<i>antages</i> genetic variation / more diverse gene pool / increased	gene pool ;				
			2	increased heterozygosity;					
			3	less likely that harmful recessive alleles will be expres	sed;				
			4	hybrid vigour / decreased inbreeding depression;					
			5	ability to respond to changing conditions / named exar e.g. different environments / pests / disease / increase	•	pring [3 max]			
	(b)	(i)	1	cut <u>DNA</u> (into fragments) ;					
			2	by, restriction enzymes / named enzyme ;					
			3	place on (agarose) gel ;					
			4	apply, current / p.d. / electricity ;					
			5	fragments travel towards anode ;					
			6	short fragments travel, further / faster, than long ones	; A mass of fra	agments			
			7	visualise DNA with UV light / other means of visualisation	tion ;				
			8	AVP; e.g. Southern blotting / described		[4 max]			
		(ii)	1	change to, primary structure / secondary structure / shape ;	tertiary structure	/ folding / 3D			
			2	protein / enzyme, cannot carry out its normal function	;				
			3	(could be an enzyme) that is essential for a metabolic	pathway ;				
			4	(could) control the expression of another gene / series	of genes;	[2 max]			
	((iii)	1	(only) one base / base pair / triplet, needs to chamaize);	ange (for teosin	te to become			
			2	idea that this could occur in a natural population of teo	sinte / mutation	,			
			3	variant, looks different / easy to spot ;					
			4	early farmers could have selected it to breed from ;					
			5	no need for complex breeding programme;		[3 max]			
						[Total: 15]			

Page 4			ļ	Mark Scheme	Syllabus	Paper		
				GCE A/AS LEVEL – May/June 2008 9700				
4	(a)	1		olarisation / impulses / action potential, opens calcium creased permeability to calcium ions	ion channels ;			
		2	in pi	esynaptic <u>membrane</u> ;				
		3	calc	ium ions enter, synaptic knob / through presynaptic me	embrane ;			
		4	vesi	cles of, acetylcholine / neurotransmitter;				
		5	fuse	with presynaptic membrane;				
		6	emp	ty contents into synaptic cleft / exocytosis ;		[3 max]		
	(b)	(i)	1	fluorescence, more / higher, in sperm from wild type n	nice / ora ;			
			2	comparative figures ; e.g. 170 v 10 and 400 v 10				
			3	mutant sperm do not have ${f P}$ / ora ;				
			4	so cannot take up calcium ions / ora ;		[3 max]		
		(ii)	1	fluorescence of flagella (of wild-type sperm) higher that	an heads ;			
			2	more P in flagellum than head ;				
			3	flagella take up more calcium ions ;				
			4	flagellum has larger surface area / ora ;				
			5	no difference in heads and flagella of mutant mice spe	erm since no P ;	[3 max]		
	(c)	(i)	fertil	plained				
			outs	ide the reproductive tract / outside the body ;		[2]		
		(ii)	with					
				few / no, mutant sperm penetrate zona pellucida / ora	,			
				lack of calcium ions / ora;				
			3	no / less, vigorous movement (of flagellum) / ora ;				
			with 4	<i>out ZP</i> mutant sperm can penetrate oocytes (without ZP) ;				
			5	differences in penetration less significant between wild	d type and mutant			
			6	flagellum movement not needed for penetration (of oo				
			7	AVP ; e.g. smaller % success of wild-type sperm with with wild with ZP because, lack of binding site / damage	oocytes without			

[Total: 15]

for syn for, gro does n takes u unsigh require contan Cu / Fo eaching low lev low en few sa organia	ium obtains energ ithesis of materials owth / division ; not need to use ca up large area ; tly ; es, lot of water / co nination of water / e, toxic to plants ; g (accept ora for m yel technology / no	arbon compounds for energy ; ontinuous water supply ; / pollution due to acid ; <i>mining)</i> o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards		[2 max] [2 max]
for syn for, gro does n takes u unsigh require contan Cu / Fo eaching low lev low en few sa organia	thesis of materials owth / division ; not need to use ca up large area ; tly ; es, lot of water / co nination of water / e, toxic to plants ; g (accept ora for n vel technology / no ergy consumption fety hazards / safe sm easy to, obtain	arbon compounds for energy ; ontinuous water supply ; / pollution due to acid ; <i>mining)</i> o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards		[2 max] [2 max]
for syn for, gro does n takes u unsigh require contan Cu / Fo eaching low lev low en few sa organia	thesis of materials owth / division ; not need to use ca up large area ; tly ; es, lot of water / co nination of water / e, toxic to plants ; g (accept ora for n vel technology / no ergy consumption fety hazards / safe sm easy to, obtain	arbon compounds for energy ; ontinuous water supply ; / pollution due to acid ; <i>mining)</i> o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards		[2 max] [2 max]
does n takes u unsigh require contan Cu / Fo eaching low lev low en few sa organia	up large area ; tly ; es, lot of water / co nination of water / e, toxic to plants ; g (accept ora for n vel technology / no ergy consumption fety hazards / safe sm easy to, obtain	ontinuous water supply ; / pollution due to acid ; <i>mining)</i> o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards		[2 max] [2 max]
takes u unsigh require contan Cu / Fe eaching low lev low en few sa organia	up large area ; tly ; es, lot of water / co nination of water / e, toxic to plants ; g (accept ora for n vel technology / no ergy consumption fety hazards / safe sm easy to, obtain	ontinuous water supply ; / pollution due to acid ; <i>mining)</i> o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards		[2 max] [2 max]
unsigh require contan Cu / Fe eaching low lev low en few sa organi	tly ; es, lot of water / co nination of water / e, toxic to plants ; g (accept ora for n vel technology / no ergy consumption fety hazards / safe sm easy to, obtain	/ pollution due to acid ; <i>mining)</i> o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards	uires less maintenar	
require contan Cu / Fo eaching low lev low en few sa organi	es, lot of water / contination of water / e, toxic to plants ; g (accept ora for m yel technology / no ergy consumption fety hazards / safe sm easy to, obtain	/ pollution due to acid ; <i>mining)</i> o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards	uires less maintenar	
contan Cu / Fo eaching low lev low en few sa organi	nination of water / e, toxic to plants ; g (accept ora for n vel technology / no ergy consumption fety hazards / safe sm easy to, obtair	/ pollution due to acid ; <i>mining)</i> o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards	uires less maintenar	
Cu / Fo eaching low lev low en few sa organia	e, toxic to plants ; g (accept ora for n vel technology / no ergy consumption fety hazards / safe sm easy to, obtair	<i>mining)</i> o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards	uires less maintenar	
eaching Iow lev Iow en few sa organia	g (accept ora for n vel technology / no ergy consumption fety hazards / safe sm easy to, obtair	<i>nining)</i> o sophisticated machinery / requ n / less fossil fuels used ; ēr ; R no hazards	uires less maintenar	
low lev low en few sa organi	vel technology / no ergy consumption fety hazards / safe sm easy to, obtair	o sophisticated machinery / requ n / less fossil fuels used ; fer ; R no hazards	uires less maintenar	nce ;
few sa organi	fety hazards / safe sm easy to, obtair	er; R no hazards		
organi	sm easy to, obtair			
-	-	n / culture;		
self re	olicating;			
waste	less hazardous ;			
dispos	al of waste, costs	less / is easier ;		
ref. lov	v grade ores / scra	ap iron ;		
less w	orkers needed;			
ref. us	e in situ ;			[4 max]
				[Total:8]
<i>le</i> erent) f	orm of a gene ;	A variety / version ignore refs to locus / mutation		[1]
			· · · ·	as its effect in [1]
e / allel	e, on X chromoso	ome / sex linkage ;		
	eds 2 RGC <u>alleles</u>	<u>s</u> / homozygous recessive / can	be heterozygous;	
ale, ne				[2 max]
ie Ple	erent) f <i>ssive</i> e whic ozygot e / allel	erent) form of a gene ; ssive e which does not have ozygote / affects pheno e / allele, on X chromoso ale, needs 2 RGC <u>alleles</u>	erent) form of a gene ; A variety / version <i>ignore refs to locus / mutation</i> <i>ssive</i> e which does not have its effect in heterozygote / all ozygote / affects phenotype if dominant allele is absent e / allele, on X chromosome / sex linkage ; ale, needs 2 RGC <u>alleles</u> / homozygous recessive / can	erent) form of a gene ; A variety / version <i>ignore refs to locus / mutation</i> <i>ssive</i> e which does not have its effect in heterozygote / allele which (only) have ozygote / affects phenotype if dominant allele is absent ;

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9700	04

(c) $1 - X^{R}X^{r} / Rr$;

 $4 - X^{R}Y / R / R^{\circ} / R$ -;

 $6 - X^{r}Y / r / r^{\circ} / r$ -;

$$7 - X^{R}X^{r} / Rr;$$

if X and Y not used then mark to max 3

[Total:8]

[4]

7 (a) (i) ref. wavelength

- 1 chlorophyll **a** peaks at <u>430</u>nm **and** chlorophyll **b** peaks at <u>450</u>nm ;
- 2 chlorophyll **a** peaks at <u>660</u>nm **and** chlorophyll **b** peaks at 635–640nm ;
- 3 ref. linking 400–500nm with blue light / ref. linking 600–700nm with red light ;
- 4 (both have) little absorption, between 500–600nm / in green light;
 A little absorption, chlorophyll a 450–600 and chlorophyll b 500–600;
- ref. light absorption
- 5 (both) peaks in blue light are higher than peaks in red light;
- 6 chlorophyll **b** higher than chlorophyll **a** in the blue end / chlorophyll **a** higher than chlorophyll **b** in the red end / AW ; **A** converse
- 7 comparative figures for light absorption to illustrate points 5 or 6; [3 max]

ignore units

- (ii) 1 absorbed light used for photosynthesis;
 - 2 higher rate of photosynthesis in red and blue light;
 - 3 action peak(s) / high rate of photosynthesis, correspond to absorption peak(s);
 - 4 blue / shorter wavelength, light has more energy / ora;
 - 5 not an exact match between absorption and action spectra (in middle region);
 - 6 role of carotenoids / accessory pigments, (in middle region); [3 max]
- (iii) they contain chlorophyll;

green / blue green / yellow green, light reflected ; [2]

(b) W – label line to stroma;

Y – label line to, granum / intergranal membranes; [2]

Pa	ge 7				Syllabus	Paper	
			GCE A	/AS LEVEL – May/June 2008	9700	04	
(c)	1	light	not limiting ;				
	2	mucl	h, ATP / reduce	ed <u>NADP</u> , available ;			
	3	$\rm CO_2$	is the limiting fa	actor;			
	4	beca	ause low conce	ntration CO_2 (in atmosphere) ;			
	5	more	e CO ₂ combines	s with RuBP ;			
	6	ref. r	ubisco ;				
	7	Calv	in cycle / light i	ndependent stage ;			
	8	GP t	oTP;				
	9	more	<u>e</u> hexose produ	ced ;			
	10	ref. f	ate of hexose ;			[5 max]	
						[Total:15]	
8 (a)	(i)	same	e, mean / mode	9;			
		narro	ower (5–35) ;	ignore height, curve should be syn	nmetrical	[2]	
	(ii)	stabi	ilising ;			[1]	
	()		- 3 ,				
(b)	(i)	mea	n / mode, to lef	t of 20cm ;			
		narro	ower (0–35) ;	ignore height, curve should be syn	nmetrical	[2]	
	(ii)	diroc	ctional / evolutio			[1]	
	(11)	unec		Julary,		[']	
	(iii)	fishir	-				
		-	ation ;				
		AVP	;			[2 max]	
						[Total: 8]	

Page			Mark Scheme Syll		Paper	
			GCE A/AS LEVEL – May/June 2008 9700		04	
(a)	1	redu	ced, NAD / FAD ;			
. ,	2	pass	sed to ETC ;			
	3	inne	r membrane / cristae ;			
	4	hydr	ogen released (from reduced, NAD / FAD) ; R H2			
	5	split	into electrons and protons ;			
	6	proto	ons in matrix ;			
	7	elect	trons pass along, carriers / cytochromes ;			
	8	ref. r	redox reactions ;			
	9	ref. e	energy gradient ;			
	10	ener	gy released ; R produced			
	11	proto	ons (pumped) into intermembrane space ;			
	12	proto	on gradient ;			
	13	proto	ons pass through (protein) channels ;			
	14	ATP	synthase / stalked particles ;			
	15	ATP	produced;			
	16	chen	niosmosis ;			
	17	elect	tron transferred to oxygen ;			
	18	addi	tion of proton (to oxygen) to form water / (oxygen) red	uced to water ;	[9 max	
			ate mistakenly writes about photosynthesis only allow points 7, 8, 9, 10 and 15 to 5 max			
(b)		ytopla NAD	a <i>sm</i>), becomes reduced / accepts H ;			
	20	durir	ng glycolysis ;			
	<i>in plants</i> 21 pyruvate converted to ethanal ;					
	22	etha	nal reduced ;			
	23	by re	educed NAD ;			
	24	etha	nol formed ;			
		nimal				
		••	vate converted to lactate ;			
	26 27	-	educed NAD;			
	27		ver / muscles ;		10	
	28	allow	vs glycolysis to continue ;		[6 ma:	
	allo	w eitł	ner 23 or 26			

[Total: 15]

	Pa	ge 9		Mark So		Syllabus	Paper		
			GCE A/AS LEVEL – May/June 2008 9700			04			
10	(a)		ndocrine						
		1	hormones ;			<i></i>			
		2	•		micals that transfer inforr	nation			
		3	ductless glands / (re	,	blood;				
		4	target, organs / cells						
		5	ref. receptors on cell						
		6	example of named h	ormone and	l effect ;				
		ner 7	o <i>us</i> impulses / action pot	entials ; I	R electrical, signals / curr	ent			
		8	along, neurones / ne	rve fibres ;	R nerves				
		9	synapse (with target	/ neuromu	scular junction ;				
		10	ref. receptor / effecto	r / sensory	/ motor, neurones ;				
			rences – endocrine slow effect / ora ;						
		12	ong lasting effect / c	ra ;					
		13	widespread effect / c	ra;					
		14	AVP ; e.g. extra deta	il of synaps	e		[8 max]		
	(b)	15	IAA / plant growth re	gulator ;					
		16	synthesised in, grow	ing tips / ap	ical buds / meristems ;				
		17	moves by diffusion ;						
		18	from cell to cell ;						
		19	also, mass flow / in p	hloem ;					
		20	stimulates cell elong	ation; R	cell enlargement				
		21	nhibits, side / lateral	, buds / grov	wth ; A inhibits branchi	ng			
		22	plant grows, upward	s / taller ;	A stem elongates				
		23	IAA / auxin, not solel	y responsib	le ;				
		24	interaction between	AA and oth	er plant growth regulators	6;			
		25	AVP ; e.g. role of AE	A and later	al bud inhibition				
		26	AVP ; e.g. cytokinins	antagonist	ic to IAA / gibberellins enl	hance IAA	[7 max]		
							[Total: 15]		