CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9700 BIOLOGY

9700/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9700	41

Mark scheme abbreviations:

•	separates	marking	noints
,	oopulatoo	manning	pointo

I alternative answers for the same point

R reject

- A accept (for answers correctly cued by the question, or by extra guidance)
- **AW** alternative wording (where responses vary more than usual)
- **<u>underline</u>** actual word given must be used by candidate (grammatical variants accepted)
- max indicates the maximum number of marks that can be given
- ora or reverse argument
- **mp** marking point (with relevant number)
- ecf error carried forward
- I ignore
- **AVP** alternative valid point (examples given as guidance)

	Page 3			Mark Scheme GCE AS/A LEVEL – May/June 2014	Syllabus 9700	Paper 41
1	(a)	(i)	stror			[1]
		(ii)	low <u>e</u>	r CO ₂ concentration ;		
			less,	carbon fixation/CO ₂ combining with RuBP/RuBP co	nverted to GP;	
			RuB	P reformed from TP ;		[max 2]
		(iii)	0.01	;;		
			A 0.0	012 or $1.8 \div 150$ or $\frac{2.0 - 0.2}{150}$ or $\frac{2.0 - 0.2}{350 - 200}$ for	1 mark	[2]
	(b)	les	s TP;			
		•		conversion to, (other) carbohydrates/lipids/amino aci examples, e.g. glucose/hexose/cellulose/starch	ids/proteins;	
		AV	Ρ;	e.g. 1 – (amino acids) used to make proteins division	s for, growth/c	ell
				e.g. 2 – (carbohydrate/lipid) for respiration for, gro	owth/cell division	[max 2]
						[Total: 7]
2	(a)	ide	a of ci	oss-pollination involves two (parents)/self-pollination	one (parent) ;	
		ref.	outbr	eeding/inbreeding;		
		(two	o pare	ents) have different, genotypes/sets of <u>alleles</u> ;		
		ide	a of n	ew combinations of <u>alleles</u> in offspring ;		[max 3]
	(b)	(tot	al) DN	IA/genome, cut into fragments ;		
		by I	restric	tion enzymes ;		
		DN	A, de	natured / made single stranded;		
		ref.	prime	ers/(modified) PCR ;		
		ref.	dideo	exynucleotides/chain termination;		
		DN	A/Ta	q, polymerase ;		
		cop	ies of	different lengths produced ;		
		ele	ctroph	oresis; A description		
		det	ectior	, of fluorescence / by laser scanner ;		
		sec	luenco	e of, bases/nucleotides, read (by computer);		[max 4]

	Page 4		L .		Ma	ark Scheme	Syllabus	Paper
				GCE AS	5/A LE	EVEL – May/June 2014	9700	41
	(c)	cro	ss(-po	ollinate) them;	A des	cription		
		(if s	same	species) offsprin	g, are	e fertile/can themselves produce	e seeds; ora	[2]
								[Total: 9]
3	(a)	(i)	AAB	BCC;				[1]
		(ii)	meio	osis unsuccessfu	l (in, s	sterile hybrid/AB);		
			gametes not formed ;					
				lents cannot forr ologous ;	m/chr	romosomes cannot pair up/chro	omosomes are r	not
			poly	ploidy occurs/ch	romo	somes double; A tetraploid		
			failu	re of cell division	/all c	hromosomes in one daughter ce	ell; A descriptio	n
				mosomes can no osis can be comp		m pairs/gametes can be formed;	d/	[max 4]
	(b)	(i)	in pr	esence of E β f la	rge ni	umber aphids, stop feeding/mov	/e;	
			in at	osence of E β f, fe	w/no	aphids, stop feeding/move ;		
				n Experiment 1, l only Eβf ;	has of	ther chemicals/not pure $E\beta f$ or	air in Experimen	t 2
				concentration centration unknow		periment 2 may be unnatui Experiment 1 ;	rally high or E	Ξβf
			diffe	rent volumes of a	air in l	Experiment 1 and Experiment 2	;	
			com	parative data qu	ote;			
			e.g.					
			55%	versus 84%	or	54 out of 99 versus 111 out of	132	
			54.5	% versus 0.9%	or	54 out of 99 versus 1 out of 11	3	
			84%	versus 0%	or	111 out of 132 versus 0 out of	106	[max 4]

	Page 5		Syllabus	Paper
		GCE AS/A LEVEL – May/June 2014	9700	41
	(ii)	$E\betaf$ stops aphids settling ;		
		$E\betaf$ attracts, predators of aphids/ladybirds ;		
		attacked aphids secrete more $E\betaf$;		
		aphids not, eating/taking nutrients from, wheat ;		[max 3]
	(iii)	gene/E β f, already in, peppermint/various plant species ;		
		$E\beta f$ not, toxic/harmful to human health ;		
		no new chemical added to human diet;		
		does not kill insects (unlike Bt maize or cotton);		
		aphids still available for, predators/food web;		[max 3]
				[Total: 15]
4 ((a) (i)	spermatagonium – 2n primary spermatocyte – 2n secondary spermatocyte – n spermatids – n spermatozoan – n ;; all five correct for two marks three or four correct for one mark		[2]
	(::)	(apprentice only and apprentice) arouth (mited		
	(11)	(spermatogonium to primary spermatocyte) growth / mitos (spermatid to sperm) <u>maturation</u> ;	515,	[0]
	(iii)	any 1 from		[2]
	(111)			
		provide nutrients for sperm(atid);		
		protect sperm from attack from immune system ;		
		regulation of, sperm production/FSH ;		
		AVP ; e.g. removes excess cytoplasm during sperm matuguides sperm to centre of tubule	iration/	[max 1]

Page 6		;	Mark Scheme	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2014	9700	41
(b)	FSł	Η;			
	(ho	rmon	e) given to stimulate <u>follicle</u> development ;		
	Gnl	RH aç	gonists/GnRH receptor antagonists;		
	to p				
	hun	nan c	horionic gonadotrophin;		
	(ho	rmon	e) given to stimulate maturation of oocytes ;		
	(ma	ature	oocytes) collected from ovaries (just before ovulation)	;	
	ref.	use	of, fine tube/needle/ultrasound;		[max 4]
(c)	(i)		I (alone)/FSH + testosterone, increases developme spermatozoa/elongated cells);	ent (of spermati	ds
		testo	osterone (alone) has very little effect;		
		FSH	I + testosterone causes great <u>est</u> increase of developm	ent;	
		use	of, comparative/manipulated, figures ;		[4]
	(ii)	(red	uction is very small so) may be, insignificant/random/	due to chance ;	
		(son	ne cells) may have died ;		[max 1]
((iii)	temp	perature, similar to testes/in range 30 °C to 35 °C/lowe	er than core ;	
		sper	matozoa production, will not proceed at 37 °C/at high	temperature;	[2]
					[Total: 16]
(a)	ran	dom/	spontaneous ;		
	<u>mu</u> t	tation	<u>.</u> ;		
	bas	se/nu	cleotide/triplet, change/substitution;R addition/dele	etion	[max 2]
(b)	(i)	as a	Ititude increases frequency of A ⁰ increases ; ora for	A ¹	
			nore frequent at high altitudes / A ¹ more frequent at lov rmediate frequency of either allele at intermediate altitu		[2]

Pa	ge 7	Mark Scheme Syllabus		
		GCE AS/A LEVEL – May/June 2014 9700	41	
	(ii) idea	of (pre-existing) genetic variation in deer mouse population;		
		igh altitude mice with, glycine/A ⁰ , more likely to survive/have selectiv antage ; ora	e	
	mice	e (with A⁰) reproduce (at high altitude) ; ora		
	and	pass on the A ⁰ allele ; ora		
	parti	ial pressure/concentration, of O_2 acts as a selection pressure ;		
	ref. to disadvantage of haemoglobin with very high affinity at low altitude;			
	as le	ess able to unload oxygen (in respiring tissues) ;	[max 4]	
			[Total:8]	
6 (a)	chonnolo			
6 (a)		s; I voltage-gated		
	depolaris	sed; A positive inside		
	receptor	/generator;		
	threshold	d;		
	frequenc	cy; A number per second/rate R speed	[5]	
(b)	action po	otential stimulates neighbouring area of membrane ; AW		
	Na⁺, mov	ves sideways/attracted to areas at resting potential; A local circuit		
	causes,	Na ⁺ ion channels to open/2 nd depolarisation ;		
	(transmis	ssion) in one direction due to, hyperpolarisation/refractory period ;		
	myelin sl	heath/Schwann cell ;		
	sheath ir	nsulates, axon/dendron/neurone ;		
	depolaris	sation/action potential, only at nodes of Ranvier/unmyelinated part ; ora	I	
	saltatory	conduction/action potential 'jumps' from node to node;	[max 5]	
			[Total:10]	

	Page 8	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2014	9700	41
7	(a) <u>centrom</u> e	ere;		[1]
	(b) idea that	different genes, are present/missing ; R alleles		
	different,	proteins/poypeptides, produced/missing;		[2]
	(c) XY;			
	X X ₁	Х Ү;		
	XX	XX ₁ ;		
	normal	Turner's ;		[4]
				[Total:7]

8 (a) (DNA for) transcription / codes for mRNA ;

(ribosomes for) translation;

synthesis of, respiratory enzymes/named enzyme/inner membrane proteins; [max 3]

(b)

correct order	letter of stage
1	V
2	S
3	U
4	w
5	R
6	Q
7	x
8	Т

S U W all above R ; S U W in correct order ;

Q X T all below R ; Q X T in correct order ;

[4]

	Page 9			Mark Scheme	Syllabus	Paper
			GCE AS/A	LEVEL – May/June 2014	9700	41
	(c)	hydrolysi	is/dephosphorylatio	n/exothermic/exergonic;		[1]
	(d)	anaerobi	c respiration ;			
		substrate	e level phosphorylati	on (in glycolysis);		
		at triose	phosphate ———	► pyruvate step ;		
		(net) gair	n of 2ATP (per gluco	se); A 2 used and 4 produced		
		pyruvate	, reduced/gains hyd	rogens (from reduced NAD) ;		
		forming I	actate ;			
		NAD reg	enerated/NADH ₂ re-	-oxidised;		
		this allow	vs glycolysis to conti	nue ; I ethanol pathway		[max 5]
						[Total:13]
9	(a)	<i>similaritie</i> eukaryot	es ic (cells) ;			
		detail of	eukaryotic cell ;;	e.g. nucleus/linear DNA /chromosomes associated with /(named) membrane-bound org ribosomes		
		<i>differenc</i> single-ce	es lled or colonial/mul	ticellular ;		
		autotropl	hic or heterotrophic	:		
		motile or	unable to move ;			
		cell wall	or no cell wall ;			
		vacuole	or no vacuole ;			
		different	life cycles ;			[max 7]

Page 10	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9700	41

(b) fall in numbers;

danger of becoming extinct;

ref. (IUCN/International Union for Conservation of Nature)/red list;

one mark for idea, additional mark if qualified with point specific to named example e.g. habitat destruction ; detail ;

climate change ; detail ; e.g. rise in temperature

increase in disease ; detail ;

increase in, predators/grazers; detail;

decrease in food ; detail ;

named pollutant and habitat affected ; detail ;

hunting/killing/poaching/removal (plant); detail; e.g. trade in animal parts, selling rare plants

increased competition ; detail ;

lack of human education ; detail ;

disturbance to breeding sites ; detail ;

[max 8]

[Total:15]

	Page 11		Mark Scheme GCE AS/A LEVEL – May/June 2014	Syllabus 9700	Paper 41
10 ((a)	bacteria	walls made of peptidoglycans ;	5700	– – – – – – – – – –
-	. ,		secrete autolysins ;		
			les in cell wall/ AW ;		
		to allow	wall to stretch during growth / AW ;		
		(glycopro	otein) peptidases form cross-links (between peptidogly	vcans);	
		(penicilliı	n) inhibits (glycoprotein) peptidases ;		
		cross-lin	ks (between peptidoglycans) do not form ;		
		cell wall	weakened;		
		bacteria	take in water by osmosis;		
		increased turgor pressure causes cell to burst ; AW			
		AVP;e	.g. competitive inhibition		[max 8]
	(b)	ref. biole	eaching;		
		<u>A</u> cidithio	bacillus/ <u>A</u> . ferrooxidans ; A <u>T</u> hiobacillus/ <u>T</u> . ferrooxida	ans	
		low grad	e ores/(mine) waste ;		
		two met I iron	tals ; e.g. copper, zinc, cobalt, uranium, lead, r	nickel, gold,	silver
		insoluble	e ore turned into soluble products ;		
		ore piled	up;		
		acidic co	onditions created/pH low(ered)/pH 1.5 – 3;		
		different	bacteria at different temperatures ;		
		chemoau	utotrophic ; A description		
		oxidatior	n (reactions) ;		
		sulfide/S	S $^{2-}$ to sulfate / SO ₄ $^{2-}$; (direct oxidation of ore)		
		Fe ²⁺ /fer	rrous \rightarrow Fe ³⁺ /ferric;		
		Fe ³⁺ oxi	dise other ores ;		
		product,	drains/leaches/is washed, into pool;		
		metal dis	splaced by adding scrap iron ;		[max 7]
					[Total:15]