UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9700 BIOLOGY

9700/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	23

Mark scheme abbreviations:

; separates marking points

I alternative answers for the same point

R reject

A accept (for answers correctly cued by the question, or by extra guidance)

AW alternative wording (where responses vary more than usual)

<u>underline</u> actual word given must be used by candidate (grammatical variants excepted)

max indicates the maximum number of marks that can be given

ora or reverse argument

mp marking point (with relevant number)

ecf error carried forward

I ignore

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	23

1 (a) (i) metaphase;

[1]

(ii) chromosomes / (sister) chromatids, line up at the, equator / equatorial plate / metaphase plate; A move to I middle / centre centromeres attached to, spindle / spindle fibres;

A (spindle) microtubules A kinetochore centrioles, reach / located at / AW, <u>poles</u>; R ends ref. spindle fully formed; A spindle fibres extend from poles / AW R ref. to nuclear envelope absent (in anaphase also)

[max 3]

(b) replacement of cells;

repair of tissue; **R** repair of cells growth / increase in cell numbers; asexual reproduction / vegetative propagation; **R** cloning maintains / same, number of chromosomes; **A** two sets of chromosomes / diploid / 2n genetically identical to parents;

A produces daughter cells that are genetically identical A ref. clone(s) ref to rejection / self vs non-self;

[max 3]

(c) ref. coordination of growth / limiting growth; ref. minimising exposure to mutations / alterations to DNA (during replication) / AW; prevent tumour formation; A prevent, cancer / uncontrollable growth effect of, tumour / cancer; e.g. compress other organs / invades other tissues or organs AVP; e.g. example of timing of cell cycle linked to cell function / idea of producing cells when required

[Total: 9]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	23

2 (a) one mark per complete correct row

DNA	RNA	
two, polynucleotides / chains / strands A double	single, polynucleotide / strand / chain	;
(double) helix	not a helix / straight chain;	;
deoxyribose	ribose differences between pentoses / sugar may be described in terms of OH on C ₂	;
thymine / no uracil	uracil / no thymine	;
hydrogen bonding (between all bases)	hydrogen bonds between some bases A no hydrogen bonds	;
ratio of A+G to C+T = 1 / AW	ratio of A+G to C+T varies	;
longer	shorter	;
one type	more than one type / three types / mRNA + tRNA + rRNA	;

[max 3]

(b) (GCG) CGC; (ACA) UGU; [2]

(c) 714 ;; A 717 / 720 if, no / incorrect, answer given, award one mark for correct working [2]

- (d) 1 (tRNA) carries amino acid to ribosome;
 - 2 ref. to specificity of amino acid carried; A role in ensuring correct primary structure
 - 3 ref. anticodon (on tRNA): codon (on mRNA) binding;
 - 4 ref. complementary / base pairing; A A-U, C-G
 - 5 ref to tRNA binding sites within ribosome;
 - 6 two tRNAs bound to, mRNA / ribosome, at same time;
 - 7 amino acids held close to each other / AW;
 - 8 (for) peptide bond formation;
 - 9 (tRNA) can be reused / binds another amino acid;

[max 4]

[Total: 11]

	002710//122121 may/ound 2011	
(a) (i)	active, transport / uptake; carrier / transport, protein; A pump protein R channel protein ref. (protein) changing shape / conformational change; ref to specificity;	[1]
	ATP / energy, required;	[max 2]
(ii)	ATP / ADP / DNA / RNA / nucleic acid / NADP / phospholipid ; A nucleotide / named nucleotide / nucleoside A phospholipid bilayer	[1]
(b) (i)	W in the central X-shaped region;	[1]
(ii)	osmosis <i>in correct context</i> ; e.g. through, cell surface / partially permeabl into, cytoplasm / cell diffusion, into / through, cell walls;	e, membrane or
	from (region of), high(er) / less negative, water potential, to (region of) negative, water potential $\ or \ $ down a water potential gradient;	, low(er) / more
	transpiration pull;	[max 2]
(iii)	through cortex / via cortical cells ;	
	apoplast pathway (by) via cell walls (of adjacent cells); R if named as symplast pathway; symplast pathway via cytoplasm and plasmodesmata; R if named as apoplast pathway ref. vacuolar pathway;	
	ref. apoplast to symplast / pathway described, at endodermis; (via) passage cells; ref to, suberised / Casparian, strip; in correct context	[max 4]

Mark Scheme: Teachers' version

GCE AS/A LEVEL - May/June 2011

Syllabus

9700

Paper

23

Page 5

3

[Total: 11]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2011	9700	23
4	(a) (i)	red	blood cells / erythrocytes / red blood corpuscles;		[1]
	(ii)	myc hae	oglobin 78% A 77% } ; moglobin 21%	or 1 mark	[1]
	(iii)	(iii) myoglobin has higher affinity for oxygen / myoglobin binds oxygen while releases oxygen; ora (myoglobin) acts as a store of oxygen; myoglobin will only release oxygen, at (very) low oxygen partial pressur oxygen demand (in muscles) exceeds supply; A during exercise AVP; e.g. myoglobin has, one / fewer haem groups, so no cooperative bin e.g. allows aerobic respiration to continue (in muscle)			
	(b) (i)	(i) fetal haemoglobin has higher oxygen affinity (than adult / maternal haemoglobin) / AW; (higher oxygen <u>affinity</u>) over all ppO ₂ / use of data at more than one ppO ₂ (fro Fig. 4.1);			
		or	gen uptake from, adult / maternal, blood / AW; exchange taking place between fetal and, adult / mate	rnal, blood ;	
		ref. fetu	to fetal reliance on mother to supply oxygen / moths;	ner only source	of oxygen for [2]
	(ii)	(ii) at lower ppO ₂ both, unload / AW, oxygen; sufficient / more, adult haemoglobin present or adult haemoglobin provides sufficient oxygen / AW; ref. to compensating by producing additional red blood cells; AVP; e.g. ref. to similarity of position of both curves [magnetic provides of the curves]			ides sufficient [max 1]
		the ric	ne <u>right</u> of given curve, same overall shape as adult had that of given curve, begins at 0.2 kPa, ends at 97% ; hthin range of 0–0.4kPa and 95–99%	emoglobin curve	; [2]

[Total: 9]

				GCE AS/A LEVEL – May/June 2011	9700	23
5	(a)	(ph	loem)	sieve plate ;		[1]
	(b)	(i)	sucr	ose / amino acids / named amino acid / AVP;R suga	r	[1]
		(ii)		ce – leaf / named photosynthetic part ; – roots / seeds / fruits / petals / bud / named non-phot	osynthetic part ;	[2]
	(c)			assimilate / named assimilate, throughout f from (b)(i)		
		1		protons, (move) out of companion cells by, active trans R diffuse by active transport	sport / AW ;	
		2	H ⁺ /	protons, diffuse (back) in with / cotransport sucrose, in A description of (facilitated) diffusion R active transport	·	ells;
		2		ref. to companion cell required only once for mps 1 an	d 2	
		3 4		<u>cotransporter</u> / cotransporter described ; ose, diffuses / AW, into (phloem) sieve, tube / element	· via plasmodos	mata :
		5		ry of sucrose into sieve tube so) water potential lowers		mata,
		6	•	er enters by osmosis ;	,	
		7	(hyd	rostatic) pressure builds up; A pressure difference cr	eated	
		8		ading at, sink / named sink, gives a difference in p) ; AW	ressure (betwee	en source and
		9	(so)	mass flow; term to be used in context		[max 5]
	(d)	obt	ain, s	relevant e.g. ucrose / amino acids / other named assimilate; R nut forces, sap / AW, into aphid;	rients unqualifie	d [max 1]

Mark Scheme: Teachers' version

Page 7

[Total: 10]

Syllabus

Paper

	Page 8		3	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2011	9700	23
6	(a) (i) de		denit	trification;		[1]
		(ii)		te required for, amino acid / protein / nucleic acid, prod A other relevant named N-containing biochemicals gen (gas) not useable form for (most) plants;	duction in plants	;
	slo		slow	oval of nitrate rs / AW, growth of plants; A reduces crop yield A pla reases fertility of soil / fertilisers need to be added to so		s for growth [2]
((b)	(i)	nitrifi	ication ;		[1]
		(ii)		ref. to leave for sufficient time to remove nitrates		·
				nitrogen escapes to air		[2]
	(c)	1	air /	oxygen, will not get into soil;		
	. ,	2	lack	of oxygen reduces uptake of ions by plants / AW;		
		3		saprobiotic bacteria and fungi / nitrifying bacteria / (s are aerobic ;	some) nitrogen	fixing bacteria,
		4		reduced populations (of bacteria in mp 2);		
		5		nple of effect on nitrogen cycle ;;		
		6		slower rate / AW, of decomposition / decay nitrogen fixation cannot occur (as rapidly) nitrification cannot occur / nitrate will not be produced (more) denitrification will occur	/ less nitrate pro	duced
		7		s / plants, will use up remaining nitrate;		
		8	ref. I	eaching of, nitrates / other nutrients, for growth or (on nutrients, for growth remain in soil; A ref. leaching re		
		9	AVP	; e.g. named example of another nutrient, with role will take time to, recover nitrate levels / resume nitroge	_	

fertilisers (previously) applied washed away;

[Total: 10]

[max 4]