MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

9700 BIOLOGY

9700/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE A/AS LEVEL – May/June 2009	9700	04
1	(a)	(i)	18;			[1]
		(ii)	0.72	;		
			allov	v ecf from (i)		[1]
	(b)	1	RQ	value falls steeply, initially / 40–80 min ;		
		2	then	, very little change / AW ;		
		3	suga	ar / carbohydrate, metabolised at start ; A named ca	rbohydrate	
		4	then	fat metabolised ;		
		5	(due	to) fasting / carbohydrate running out ;		[4 max]
	(c)	1	incre	ease in rate of respiration;		
		2	kine	tic energy increases / more enzyme-substrate complex	xes / enzyme activi	ity increases ;
		3	effec	cts of too high a rise in temperature ; e.g. denaturatio	n of enzymes	
		4	AVP	; e.g. Q ₁₀ = 2		[2 max]
						[Total: 8]
2	(a)	folli		ells) / granulosa (cells) / theca ;		
			geste pus lu	iteum; A follicle (cells)		[2]
	(b)	1	(oes	trogen / progesterone affect) hypothalamus / <u>anterior</u>	pituitary ;	
		2	inhib	oit secretion of, FSH / LH / GnRH ;		
		3	follic	les do not develop ;		
		4	no o	vulation; R ref to eggs		
		5	ref. r	negative feedback ;		
		6	alter	s <u>cervical</u> mucus to stop sperm ;		
		7	prev	ents implantation / effect on endometrium;R endor	netrium thickens	[4 max]

Pa	ige 3	Mark Scheme: Teachers' version GCE A/AS LEVEL – May/June 2009	Syllabus 9700	Paper 04			
(c)	any 1	/ two from (advantage of smaller population), less poverty / less starvation / less disease ;					
	2	greater care for children that are born;					
	3	(benefit to adult women), fitter women / more women	working;				
	4	more promiscuity;					
	5	more, STD / breast cancer / cervical cancer ;					
	6	population decrease ;		[2 max			
				[Total: 8			
(a)	1	loss of habitat; A deforestation					
	2	building / industry / farming / localised use of wood;	ignore logging / timbe	ər production			
	3	difficulty in finding food; A increased competition	t no food				
	4	poaching / hunting;					
	5	ref. ivory trade;		[3 max			
(b)	1	of no use to humans ;					
	2	protected in burrows ;					
	3	<u>variety</u> of food ;					
	4	small quantity of food required;					
	5	short gestation;					
	6	large number of offspring;					
	7	camouflaged ;					
	8	(sophisticated) early warning system ;		[3 max			
				[Total: 6			

Pa	ige 4	1	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – May/June 2009	9700	04
4 (a)	(i)	Α	pericarp / fruit coat		
		В	scutellum / cotyledon		
		С	plumule / embryo shoot		
		D 0 or	radicle / embryo root · 1 = 0 marks, 2 or 3 = 1 mark, 4 = 2 marks ; ;		[2]
	(ii)	1	food / starch / nutrients ;		
		2	for use, during germination / before photosynthesis / ground;	before leaves en	nerge above
		3	to provide <u>glucose</u> for, respiration / ATP production ;	ignore energy	
		4	to produce cellulose for cell wall production;		
		5	to produce protein for, cell division / growth (of plant);	R growth of cells	s [3 max]
(b)	(i)	1	permanently;		
		2	binds with / blocks, active site;		
		3	binds with, another part of enzyme / allosteric site;		
		4	change (shape) of <u>active site</u> ;		[2 max]
	(ii)	whe 1	<i>en acetylcholinesterase is inhibited</i> acetylcholine <u>remains attached</u> to receptors (on post-s	synaptic membrane	e);
		2	sodium channels on post-synaptic (membrane) remain	<u>ı open</u> ;	
		3	membrane remains depolarised;		
		4	action potentials / nerve impulses, continue to be prod	uced;	[2 max]
(c)	1		erent sequence of, bases / nucleotides, causes differe nary structure ;	nt, sequence of a	mino acids /
	2	ace	tylcholinesterase has a different, shape / tertiary struct	ure;	
	3		tylcholine can still bind with, active site / acetylcholines ains functional ;	sterase / enzyme (or active site
	4	(but) pyrethrum / inhibitor, cannot bind with, acetylcholines	terase / enzyme;	
	5	inhi	bition is allosteric / AW ;		[3 max]
	4	rem (but	ains functional ;) pyrethrum / inhibitor, cannot bind with, acetylcholines	·	

	Page 5			Mark Scheme: Teachers' version GCE A/AS LEVEL – May/June 2009	Syllabus 9700	Paper 04		
L	(d)	(i)	1	below 0.5 μ g no insects killed in either group ;				
			2	at 0.5 μ g hybrid insects killed but resistant insects surv	vived;			
			3	at 10 μ g all insects killed in hybrid group but only 80%	killed in resistar	t group ;		
				at 30 μ g all insects killed in both groups ; alise lack of units once		[3 max]		
		(ii)	1	resistant and susceptible insects are homozygous ;				
			2	hybrid insect is heterozygous ;				
				hybrid insect shows codominance / mutant allele an effect ;	d normal allele	both have an		
				•	allow ref to gene	here [2 max]		
						[Total: 17]		
5	(a)	<i>marking points refer to batch culture</i> 1 (penicillin) is a <u>secondary</u> , metabolite / product ; R <i>Penicillium</i>						
		2	2 more penicillin is produced (per unit time); A higher yield comparative statement					
		3	in th	e later stages of growth (of the culture) / after main gro	owth phase is ov	er;		
		4	(per	nicillin produced when, fungus / <i>Penicillium</i> ,) is short of	nutrients; R n	o nutrients left		
		2a		rnative points for 2 and 3 for continuous culture (ora) penicillin is produced (per unit time); comparative st	atement			
		3a	con	tinuous culture remains in, exponential / active growth,	, phase ;	[3 max]		
	(b)			on I is controlled (blue unbroken line) icillin is produced throughout the time period ;				
		whe 2		<i>I not controlled (blue dotted line)</i> icillin production increases to a maximum and then dec	creases;			
		3	2 pe	enicillin figs plus 2 time figs (to support 1 or 2); ignore	pH figs			
		exp 4	lanat (pH	<i>ion</i> affects) enzymes (involved in penicillin production) ;				
		when pH is controlled 5 optimum pH for enzymes is at approx pH 7;						
		whe 6		<i>I not controlled</i> high / above 7, decreases / stops, penicillin production	;			
		7	(pH,	high / above 7), causes change in active site of enzyn	nes / AW ;	[4 max]		

© UCLES 2009

Pa	age 6	Mark Scheme: Teach	ers' version	Syllabus	Paper
		GCE A/AS LEVEL – Ma	y/June 2009	9700	04
(c)	1	penicillin affects (bacterial) cell wall <u>p</u>	roduction ; A affects	cross-linkages	
	2	inhibits, glycoprotein peptidases / e wall;	enzymes involved wit	h constructing (bacterial) cell
	3	viruses do not have cell walls;			[2 max]
					[Total: 9]
6 (a)	1	increases, cellular uptake of glucose	(from blood) / membr	ane permeability	to glucose ;
	2	(by), liver / muscle / adipose, cells ;			
	3	increased, respiration / metabolism, o	of glucose; A <u>increa</u>	<u>sed</u> glycolysis	
	4	causes conversion of glucose to, gly	cogen / fat; A inhibit	s glycogenolysis	
	5	(blood glucose concentration maintain A single value between 80–120	ned between) 80–120) <u>mg per 100 cm³</u>	; [3 max]
(b)	1	it is identical to human insulin / ora;			
	2	(more) rapid response ;			
	3	no / fewer, rejection problems / side	effects / allergic reacti	ons;	
	4	ref. to ethical / moral / religious, issue	es;		
	5	cheaper to produce in <u>large volume</u> /	unlimited availability	; R cheap to pro	oduce
	6	less risk of, transmitting disease / info	ection;		
	7	good for people who have developed	tolerance to animal in	nsulin ;	[2 max]
(c)	(i)	1 single target site will be in correct	t resistance gene ;		
		2 (gene to be inserted has) comple	ementary sticky ends t	o target site stick	xy ends ;
		3 more cuts would fragment plasm	id;		[2 max]
	(ii)				
		circle of DNA taken up by bacteria	bacteria resistant to ampicillin	b bacteria resi tetracyc	
		unaltered plasmids	✓	√;	
		recombinant plasmids that have taken up the wanted gene	✓	×;	

[3]

×;

© UCLES 2009

×

circles of the wanted gene

Pa	Page 7				: Teachers' v		Syllabus	Paper
					/EL – May/Ju		9700	04
(d)	(i)	1	risk spread of	resistance	e to other bact	eria ;		
		2	spread of resis	stance ma	ikes the use o	f antibiotics less	effective / AW ;	
		3	via, conjugatio	n / transfo	ormation / upta	ake of plasmids	; A description	
		4	via, 'phage / tr	ansductio	n; A descrip	otion		
		5	ref. R plasmid	multiple r	esistance (ME	OR) / extreme res	sistance (XDR) ;	[3 max]
	(ii)	1	gene for fluore	scent sub	ostance;			
		2	source of gene	e;e.g. fro	m jellyfish			
		3	substance fluc	resces w	hen exposed t	o appropriate lig	ıht ;	
		or						
		4	lacZ gene / ge	ne for β-g	alactosidase	;		
		5	splits non-blue	substrate	e;			
		6	product is blue	;				[2 max]
								[Total: 15]
7 (a)	key	/; b	lack upper cas	e, chestni	ut lower case			
	gar	nete	s;					
	offs	spring	g genotypes an	d chestnu	ut identified;			
	259	% / 0	.25 / ¼ / 1 in 4,	(probabili	ity); ignore r	atios		[4]
4.5								
(b)		ental	l genotype	a	aCC ^{CR}		AaCC	
	-		phenotype		ino / cream		black ;	
	-	netes		aC	aC ^{CR}	AC	aC ;	
	offs	spring	g genotypes	AaCC	aaCC	AaCCCR	aaCC ^{cR} ; ny order	
	offs	spring	g phenotypes	black	chestnut	black	palomino / crea	
	ecf	can	be applied to o	ffspring g	enotypes and	phenotypes		[4]

[Total: 8]

© UCLES 2009

	Pa	ge 8	}	Mark Scheme: Teachers' version GCE A/AS LEVEL – May/June 2009	Syllabus 9700	Paper 04
•	(0)	Ν.4	nelia		3700	04
8	(a)		-	ade;		101
		IN —	vasc	ular bundle / phloem and xylem / vein ;		[2]
	(b)	1	ref. /	ABA absence ;		
		2	H ⁺ tr	ansported out of guard cells, actively / using ATP;		
		3	low I	H^+ conc / negative charge, inside cell ;		
		4	K⁺ cl	hannels open / K $^{\scriptscriptstyle +}$ diffuses into cell ;		
		5	wate	er potential of cell falls; A decrease in solute potentia	I	
		6	wate	er moves into cell by <u>osmosis</u> ;		
		7	volu	me of guard cells increase / turgor increases;		
		8	have	rd cells: e hoops of cellulose microfibrils which ensure inc neter ;	crease in length	rather than
		9	have	e ends that are joined together;		
		10	have	e, thicker inner walls / thinner outer walls;		
		11	curv	e apart / bend, (to open stoma) ;		[6 max]
	(c)	(i)	<u>cycli</u>	c photophosphorylation ;		[1]
		(ii)	<u>phot</u>	<u>olysis</u> ;		
			(wat	er splits into) $2e^{-}$, $2H^{+}$ and $(\frac{1}{2})O_{2}$;		
			enzy	vme is involved ;		[2 max]
		(iii)	<u>ATP</u>	;		[1]
		(iv)	hydr	ogen carrier ;		
			GP,	reduced / hydrogen added; $R H_2$		
			to, T	P / 3 carbon sugar ;		
			uses	SATP;		[2 max]
						[Total: 14]

	Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A/AS LEVEL – May/June 2009	9700	04
9	(a) 1	code is three, bases / nucleotides; A triplet code		

- (a) 1 code is three, bases / nucleotides; A triplet code
 - 2 (gene) mutation; **R** chromosome mutation
 - 3 base, substitution / addition / deletion ;
 - 4 addition / deletion, large effect (on amino acid sequence);
 - 5 frame shift;
 - 6 completely new code after mutation / alters every 3 base sequence which follows ;
 - 7 (substitution) often has no effect / silent mutation;
 - 8 different triplet but same amino acid / new amino acid in non-functional part of protein;
 - 9 (substitution) may have big effect (on amino acid sequence);
 - 10 could produce 'stop' codon ;
 - 11 sickle cell anaemia / PKU / cystic fibrosis ;
 - 12 reference to transcription or translation in correct context; A description
 - 12a AVP; e.g. protein produced, is non-functional / not produced / incomplete [7 max]
 - (b) 13 individuals in population have great reproductive potential / AW;
 - 14 numbers in population remain roughly constant;
 - 15 variation in members of population;
 - 16 environmental factors / named factor (biotic or abiotic); linked to 17 and 18
 - (cause) many, fail to survive / die / do not reproduce ; 17
 - those best adapted survive / survival of the fittest; 18
 - 19 (reproduce to) pass on <u>alleles</u>; R genes
 - genetic variation leads to change in phenotype; 20
 - 21 ref: changes in, gene pool / allele frequency ;
 - 22 over time produces evolutionary change ;
 - 23 new species arise from existing ones / speciation;
 - 24 directional / stabilising, selection ;

[8 max]

[Total: 15]

© UCLES 2009

Page 10		10	Mark Scheme: Teachers' version GCE A/AS LEVEL – May/June 2009	Syllabus 9700	Paper 04
0 (a	a) 1	50	ective reabsorption ;	9700	04
0 (0	2		t cells have) villi / microvilli / large surface area ;		
	3	ŭ	t cells have) <u>many</u> mitochondria ;		
	4	, i	⁺ leave pct cells ;		
	5		active transport;		
	6	,	⁺ concentration falls in (pct) cells / Na ⁺ concentration gr	adient ;	
	7	Na	⁺ (diffuse) from lumen into (pct) cells ;		
	8	thr	ough, transporter / carrier, proteins; ignore channel pi	roteins	
	9	cot	ransport ;		
	1(D of,	glucose / amino acids / vitamins / chloride ions ;		
	1 [.]	1 (fro	om pct cells) into intercellular fluid; <i>linked to 10</i>		
	12	2 (th	en) diffusion into blood ; <i>linked to 10</i>		
	1:	3 (no	ormally) <u>all</u> glucose reabsorbed ;		
	14	4 <u>so</u>	<u>ne</u> water reabsorbed ;		
	1	5 <u>so</u> i	<u>me</u> urea reabsorbed ;		
	16	6 AV	P; e.g. creatinine secreted into lumen		[8 ma

accept sodium ions but reject sodium or Na

penalise once only

© UCLES 2009

Page 11	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9700	04

(b) 17 ADH affects collecting duct;

_

- 18 binds to receptor on membrane;
- 19 increase membrane permeability (to water) / more water channels ;
- 20 ref. enzyme controlled reactions ;
- 21 produces (active) phosphorylase ;
- 22 (which causes) vesicles with, water channels / aquaporins ; must be linked to 23
- 23 to, move to / fuse with, (plasma) membrane ;
- 24 more water flows out of collecting duct ;
- 25 down / along, water potential gradient ;
- 26 (then) into blood;
- 27 urine (more) concentrated / small volume of urine ;
- 28 ref. negative feedback ;
- 29 AVP ; e.g. role of loop of Henle in creating water potential gradient movement of urea increases water potential gradient

[7 max]

[Total: 15]

© UCLES 2009