

ADVANCED
General Certificate of Education
2013

Biology

Assessment Unit A2 2

assessing

Biochemistry, Genetics and Evolutionary Trends

[AB221]

MONDAY 3 JUNE, MORNING

TIME

2 hours.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. There is an extra lined page at the end of the paper if required. Answer **all eight** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Section A carries 72 marks. Section B carries 18 marks. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. You are reminded of the need for good English and clear presentation in your answers.

Use accurate scientific terminology in all answers.

You should spend approximately **25 minutes** on Section B.

You are expected to answer Section B in continuous prose. Quality of written communication will be assessed in **Section B**, and awarded a maximum of 2 marks.

Statistics sheets are provided for use with this paper.

8212

For Examiner's use only					
Question Number	Marks				
1					
2					
3					
4					
5					
6					
7					
8					

SHIIdentBounty.com

Total	
Marks	

BLANK PAGE

Section A

The light-dependent stage of photosynthesis involves photosystems which

SILIDERIBOURIS, COM are affected by both light intensity and wavelength. (a) State precisely where the light-dependent stage takes place in the chloroplast. _____ [1] (b) With reference to the events within the photosystems, explain the effect of an increased light intensity. ___ [2] (c) Explain the effect of different wavelengths of light on the activity of the pigment molecules within the photosystems.

(i)	State	the nam	ne of the	body	layer	labelled	Χ.

[1]

(ii) Identify the region labelled Y.

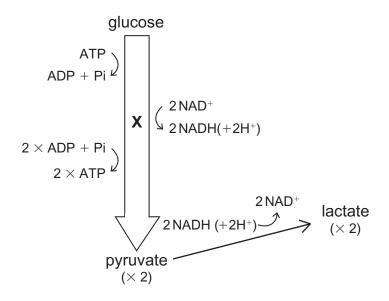
[1]

(iii) The planarian has a flattened body shape. Explain the advantage of this body shape to the planarian.

_____[2]

(b) Earthworms belong to the phylum Annelida. Annelids possess a coelom and are described as coelomate.

(i) Define precisely the term coelomate.


_______[1]

(ii) Suggest one advantage for the possession of a coelom.

_____[1]

(ii) The digestive system of annelids may be regarded as being more highly adapted (evolved) than in platyhelminthes. Describe **one** way in which they are more highly adapted and explain the advantage of this adaptation.

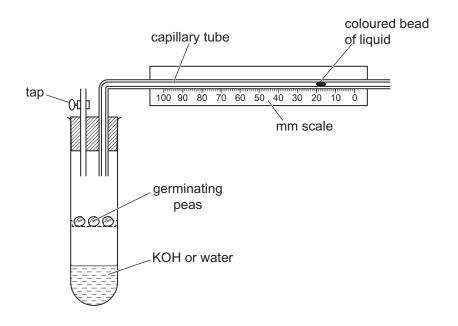
__ [2]

(i) Name process **X** in which glucose is converted to pyruvate.

______ [1]

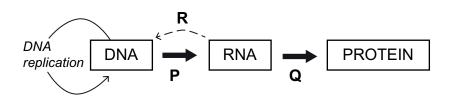
(ii) The production of lactate allows process **X** to continue where oxygen is limited. Explain how.

[2]


(b) (i) Anaerobic respiration takes place where the availability of oxygen is limited. Describe one advantage of this in highly active muscle cells.

_____[1]

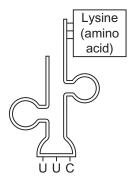
(ii) Anaerobic respiration in muscle cells leads to the build up of an oxygen debt. Describe what is meant by an 'oxygen debt'.


______[1]

The diagram below shows one type of simple respirometer.

Devise a plan for an investigation using the respirometer to determine if a sample of germinating peas is respiring anaerobically. Your plan should outline the experimental set-up, the control of variables, the collection of data and how you could determine if anaerobic respiration is taking place. (You do not need to give a detailed procedure for the investigation.)

orosodars for ans investigation,				
	L A			


(i)	Name	processes	Ρ	and	Q
-----	------	-----------	---	-----	---

P	O	[1]
Г	u	

(ii)	Suggest why	process R	does	not	normally	take	place	in	cells
------	-------------	-----------	------	-----	----------	------	-------	----	-------

[1	7

(b) Transfer RNA has an important role in protein synthesis. The diagram below represents a molecule of transfer RNA (to which a particular amino acid is attached).

Using the diagram, explain the function of tRNA.

Student Bounty.com (c) The range of DNA (the gene pool) in a species equates to its genetic variability. Twenty years ago there were just over 20 California condor birds (Gymnogyps californianus) living in the wild and the species was at grave risk of extinction. The small number of surviving members limited the genetic variability that natural selection could act on. Furthermore, a significant number of the species carried a recessive allele for a lethal form of dwarfism.

DNA (nucleotide) sequencing is allowing scientists to analyse the different alleles at many gene loci, a process that could have major conservation value.

(i)	Knowledge of the DNA sequence of a genome allows specific alleles to be identified. Name the genetic 'tool' used for this identification.	
		_[1]

(ii)	Using the information provided, suggest how the ability to identify specific alleles, followed by selective breeding, can help conserve the species.
	[3]

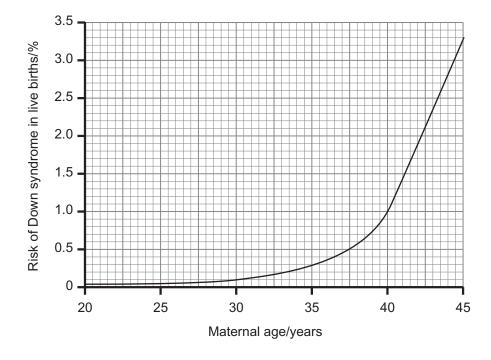
	(i)	State the	possible	genotypes	for an	individual	who is:
--	-----	-----------	----------	-----------	--------	------------	---------

Blood group A _____ Blood group AB _____ [2]

(ii) In a particular family, the father is blood group A and the mother is blood group B. They have four children, each with a different blood group.

Draw a genetic diagram below to show how it is possible for the parents to have four children all with different blood groups.

[3]


lomework Help & Pastpapers

__ [1]

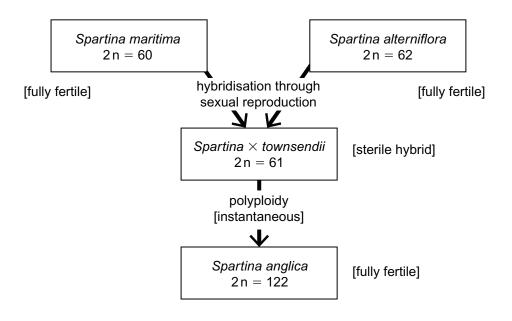
(a)	Name the type	of chromosome	mutation i	nvolved in	Down syndrome.
-----	---------------	---------------	------------	------------	----------------

[1]

(b) There is a close positive correlation between the incidence of Down syndrome and the age of the mother at the time of birth. The graph below shows the relationship between the age of the mother and the risk of having a baby with Down syndrome.

(i) Determine the risk of having a Down syndrome baby at age

30 % live births

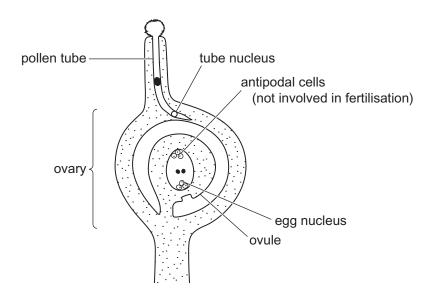

40 ______ % live births [1]

SHILDEN BOUNTS, COM Amniocentesis is used to diagnose whether a pregnancy is likely to produce a child with Down syndrome. This is an invasive procedure which involves removal of fluid containing foetal cells from the womb. If this shows that the developing foetus has Down syndrome, the parents are offered the option to terminate the pregnancy. However, amniocentesis carries a 1% risk of miscarriage (loss of foetus). Only mothers over the age of 35 years are routinely offered amniocentesis for Down syndrome.

(ii)	Using the information provided, explain fully why only pregnant mothers over 35 years of age are normally offered amniocentesis screening.
	[2]
(iii)	Most Down syndrome children are born to mothers under the age of 35 years. Suggest why.
	[11]

_ [1]

The following diagram outlines the process of speciation in the genus Spartina.



(ii) Explain how speciation by polyploidy (as shown above) differs from allopatric speciation.

_____[3]

(iii) Give one commercial application of polyploidy.

[1]

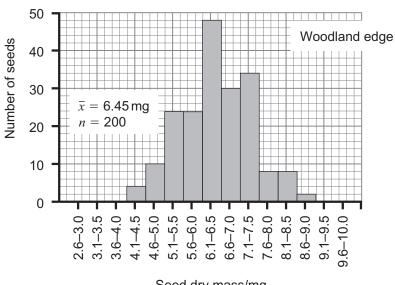
- (i) Identify and label on the diagram above:
 - the generative nucleus
 - the embryosac

[2]

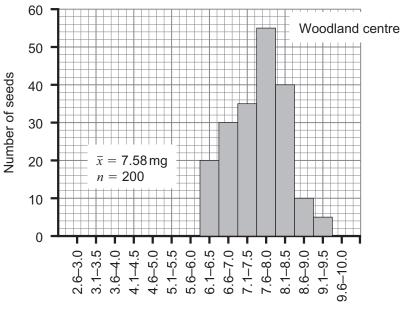
(ii) Describe the sequence of events that take place between the stage represented in the diagram above and the completion of fertilisation.

·Homework Help & Pastpapers

In an investigation of seed size in this species, the dry masses of seeds in the following categories were measured:


- seeds produced when only one seed developed in an ovary;
- seeds produced when two seeds developed in an ovary.

The results are shown in the following table.


	Seed o	category
	One seed per ovary	Two seeds per ovary
Number of seeds in sample (n)	50	50
Mean dry mass of seed (\bar{x}) /mg	7.61	6.37
Standard deviation (error) of the mean $(\hat{\sigma}_{\bar{x}})$	0.34	0.41

(i)	Suggest why the mean dry mass of a seed is bigger when there is only one seed per ovary.
	[1]
The	e t-test can be used to compare the two categories of seed mass.
(ii)	State the null hypothesis for this test.

	Answer	[2]
(iv)	State the probability value for the calculated <i>t</i> .	
		[1]
(v)	State your conclusion about the seed size in the two categories	
		[2]

Seed dry mass/mg

Seed dry mass/mg

Using the information provided, explain one way in which the data may be considered reliable.

[1]

garlic, the same species as analysed in part (b), is insect nated and, typically, a wide range of insect species are involved in pollination. However, many of the insect species involved are sland species that rarely penetrate deeply into woodland. Describe the differences between the seed masses at the twoodland edge' and the 'woodland centre'. [2] Using the information provided, suggest explanations for these differences.	COLL
Using the information provided, suggest explanations for these	
Using the information provided, suggest explanations for these	
Using the information provided, suggest explanations for these	
differences.	

Section B

Quality of written communication is awarded a maximum of 2 marks in this section.

- Stringering Outrity Com 8 Gene technology is opening up many medical and commercial opportunities through the production of transgenic organisms and in gene therapy.
 - (a) Describe the processes of obtaining desired genes and their subsequent transfer into the cells of organisms.

[8]

(b) Discuss the benefits and potential problems arising from the production of transgenic organisms and from gene therapy.

[8]

Quality of written communication

[2]

(a)	Describe the processes of obtaining desired genes and their subsequent transfer into the cells of organisms.

Student Bounty.com

THIS IS THE END OF THE QUESTION PAPER

SHILDERIH BOUNTS, COM

SHILDERIH BOUNTS, COM

SHILDENH BOUNTS, COM

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

Student Bounty.com

ADVANCED General Certificate of Education

Biology

Statistical Formulae and Tables

Statistics Sheets

Statistical Formulae and Tables

1 Definition of Symbols

n = sample size

 \bar{x} = sample mean

 $\hat{\sigma}$ = estimate of the standard deviation

These parameters are obtained using a calculator with statistical functions, remembering to use the function for $\hat{\sigma}$ – which may be designated a different symbol on the calculator – with (n-1) denominator.

Student Bounts, com

2 Practical Formulae

2.1 Estimation of the standard deviation (error) of the mean $(\hat{\sigma}_r)$

$$\hat{\sigma}_{\bar{x}} = \sqrt{\frac{\hat{\sigma}^2}{n}}$$

2.2 Confidence limits for population mean

$$\bar{x} \pm t \sqrt{\frac{\hat{\sigma}^2}{n}}$$

which can be rewritten, in terms of $\hat{\sigma}_{\!\scriptscriptstyle \bar{x}}$, as

$$\bar{x} \pm t(\hat{\sigma}_{\bar{x}})$$

where t is taken from t tables for the appropriate probability and n-1 degrees of freedom.

8212.02 **2**

3 Tests of significance

3.1 Student's t test

Student Bounty.com Different samples are denoted by subscripts; thus, for example, \bar{x}_1 and \bar{x}_2 are the sample means of sample 1 and sample 2 respectively.

The following formula for *t* is that to be used:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}}}$$

which can be rewritten, in terms of $\hat{\sigma}_{\bar{x}}$, as

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\hat{\sigma}_{\overline{x}_1}^2 + \hat{\sigma}_{\overline{x}_2}^2}}$$

with $n_1 + n_2 - 2$ degrees of freedom.

3.2 Chi squared test

Using the symbols O = observed frequency, E = expected frequency and Σ = the sum of

$$\chi^2 = \sum \frac{\left(O - E\right)^2}{E}$$

with n-1 degrees of freedom (where n is the number of categories).

Table 1 Student's t values

Table 1	Student's t	values				
d.f.	p = 0.1	0.05	0.02	0.01	0.002	0.001 636.62 31.598 12.924 8.610
1	6.314	12.706	31.821	63.657	318.31	636.62
2 3	2.920	4.303	6.965	9.925	22.327	31.598
3	2.353	3.182	4.541	5.841	10.214	12.924
4	2.132	2.776	3.747	4.604	7.173	8.610
5	2.015	2.571	3.365	4.032	5.893	6.869
6	1.943	2.447	3.143	3.707	5.208	5.959
7	1.895	2.365	2.998	3.499	4.785	5.408
8	1.860	2.306	2.896	3.355	4.501	5.041
9	1.833	2.262	2.821	3.250	4.297	4.781
10	1.812	2.228	2.764	3.169	4.144	4.587
11	1.796	2.201	2.718	3.106	4.025	4.437
12	1.782	2.179	2.681	3.055	3.930	4.318
13	1.771	2.160	2.650	3.012	3.852	4.221
14	1.761	2.145	2.624	2.977	3.787	4.140
15	1.753	2.131	2.602	2.947	3.733	4.073
16	1.746	2.120	2.583	2.921	3.686	4.015
17	1.740	2.110	2.567	2.898	3.646	3.965
18	1.734	2.101	2.552	2.878	3.610	3.922
19	1.729	2.093	2.539	2.861	3.579	3.883
20	1.725	2.086	2.528	2.845	3.552	3.850
21	1.721	2.080	2.518	2.831	3.527	3.819
22	1.721	2.074	2.508	2.819	3.505	3.792
23	1.714	2.069	2.500	2.807	3.485	3.767
24	1.711	2.064	2.492	2.797	3.467	3.745
25	1.708	2.060	2.485	2.787	3.450	3.725
26	1.706	2.056	2.479	2.779	3.435	3.723
20 27	1.703	2.052	2.473	2.771	3.421	3.690
28	1.703	2.032	2.473	2.763	3.421	3.674
29	1.699	2.045	2.462	2.756	3.396	3.659
	1.077	2.043	2.402	2.730	3.370	3.037
30	1.697	2.042	2.457	2.750	3.385	3.646
40	1.684	2.021	2.423	2.704	3.307	3.551
60	1.671	2.000	2.390	2.660	3.232	3.460
120	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.645	1.960	2.326	2.576	3.090	3.291

Reproduced from R E Parker: "Introductory Statistics for Biology", Second Edition Studies in Biology No 43, Edward Arnold (Publishers) Ltd.

4 8212.02

Table 2 χ^2 values

Table 2	χ^2 values					0.001 10.83 13.82 16.27 18.47
d.f.	p = 0.900	0.500	0.100	0.050	0.010	0.001
1	0.016	0.455	2.71	3.84	6.63	10.83
2 3	0.211	1.39	4.61	5.99	9.21	13.82
3	0.584	2.37	6.25	7.81	11.34	16.27
4	1.06	3.36	7.78	9.49	13.28	18.47
5	1.61	4.35	9.24	11.07	15.09	20.52
6	2.20	5.35	10.64	12.59	16.81	22.46
7	2.83	6.35	12.02	14.07	18.48	24.32
8	3.49	7.34	13.36	15.51	20.09	26.13
9	4.17	8.34	14.68	16.92	21.67	27.88
10	4.87	9.34	15.99	18.31	23.21	29.59
11	5.58	10.34	17.28	19.68	24.73	31.26
12	6.30	11.34	18.55	21.03	26.22	32.91
13	7.04	12.34	19.81	22.36	27.69	34.53
14	7.79	13.34	21.06	23.68	29.14	36.12
15	8.55	14.34	22.31	25.00	30.58	37.70
16	9.31	15.34	23.54	26.30	32.00	39.25
17	10.09	16.34	24.77	27.59	33.41	40.79
18	10.86	17.34	25.99	28.87	34.81	42.31
19	11.65	18.34	27.20	30.14	36.19	43.82
20	12.44	19.34	28.41	31.41	37.57	45.32
21	13.24	20.34	29.62	32.67	38.93	46.80
22	14.04	21.34	30.81	33.92	40.29	48.27
23	14.85	22.34	32.01	35.17	41.64	49.73
24	15.66	23.34	33.20	36.42	42.98	51.18
25	16.47	24.34	34.38	37.65	44.31	52.62
26	17.29	25.34	33.56	38.89	45.64	54.05
27	18.11	26.34	36.74	40.11	46.96	55.48
28	18.94	27.34	37.92	41.34	48.28	56.89
29	19.77	28.34	39.09	42.56	49.59	58.30
30	20.60	29.34	40.26	43.77	50.89	59.70
40	29.05	39.34	51.81	55.76	63.69	73.40
50	37.69	49.33	63.17	67.50	76.15	86.66
60	46.46	59.33	74.40	79.08	88.38	99.61
70	55.33	69.33	85.53	90.53	100.43	112.32
80	64.28	79.33	96.58	101.88	112.33	124.84
90	73.29	89.33	107.57	113.15	124.12	137.21
100	82.36	99.33	118.50	123.34	135.81	149.45

Reproduced from R E Parker: "Introductory Statistics for Biology", Second Edition Studies in Biology No 43, Edward Arnold (Publishers) Ltd.

8212.02 5

SHIIDENIBOUNKY.COM

SHIIDENIBOUNKY.COM

