

QUALIFICATIONS ALLIANCE

Mark scheme June 2003

GCE

Biology B

Unit BYB4

Copyright $^{\odot}$ 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: Director General

SECTION A

Question 1

(a)

(b)

	Process	
	Respiration	Photosynthesis
Name of coenzyme	NAD	NADP
Stage in the process where coenzyme is reduced	Glycolysis <u>and</u> link reaction/Krebs cycle	light dependent
Stage in the process where coenzyme is oxidised	electron transport chain	light independent

1 st column,	
glycolysis and Krebs cycle/link reaction;	
oxidative phosphorylation/ETC;	
2 nd column,	
light dependent, then light independent;	3
used to reduce G3P;	
to sugar/triose phosphate/fructose/glucose;	2
Total	5

(a)	(i)	antibody cannot get through pores (and attack cells); glucose small enough to (diffuse) enter / hormones can leave; protects from lymphocytes / no antigen on silicon box;	
			2 max
	(ii)	killing animals to use for human (transplant); religious objections; other valid suggestion;	1 max
		omer vand suggestion,	1 IIIax
(b)	detect	Ill in rat blood sugar means more/less glucose enters (diffuses) intered by animal pancreas cells that release insulin/glucagon; n (diffuses) into rat's blood;	o box;
		n/glucagon makes rat's cells take up/release more glucose;	
			3 max
		Tota	ul 6
Quest	ion 3		
(a)	(i)	pyruvate;	1
	(ii)	reacts (with coenzyme A) to give acetylcoenzyme A; decarboxylation / CO ₂ given off;	
		NAD reduced / oxidation;	2
(b)	with o	glycolysis in anaerobic conditions / CO_2 only produced in Krebs convergence of the second structure of the second structur	
	CO ₂ g	iven off in link reaction;	3 max
		Tota	al 6

(a)	$\mathbf{X} - ADP$, $\mathbf{Y} - phosphate/P_i/(P)$;	1	
(b)	 (candidates may start at any point but <u>must</u> refer to stages) Stage A, binding cause(d) myosin head to move and pull actin pass Stage B, binding of ATP releases myosin head from actin; leading to movement of myosin head in Stage C; B/C/D linked to breakdown of ATP to ADP and phosphate; Stage D, myosin head binds to actin; binds to actin to left of first one; also causes ADP and phosphate release; 	t:	4 max
(c)	without ATP, myosin heads remain bound (to actin);		1
		Total	6

(a)	three t	sensitive to colour/different wavelengths of light; types of cones, red, green and blue absorbing; rs due to combinations of cones stimulated;		3
(b)	(i)	(with reference to peak absorption) both have three different types of cells/three peaks of absorption; two types very similar, about 450 nm and 525-550 nm; <i>(accept blue and green)</i> human type at 600 nm <u>and</u> moth type at 350 nm;		
		(accept red and UV)		2 max
	(ii)	flower (has a pigment that) reflects light in 350 nm range; moth has cells to detect this (humans do not);		2
	(iii)	pattern points to food/nectar/pollen/identifies it from flowers with same shape;		1
			Total	8

(a)	(i) (ii)	FfGg ; DNA (in each chromosome) has replicated, (to give two chromotide):		1
		(to give two chromatids);(so) two copies of the gene/allele, one on each chromatid;		2
(b)	F and	G bearing chromosomes on same side of equator;		1
(c)		ng over shown between non-sister chromatids; rect place;		
		m showing chromatids and alleles after cross over;		3
			Total	7

(a)	sex-lir	orm of a (specific) gene;		1
(b)	(i) OR	 3 and 4 do not show the condition but 9/one male does; 4 must be carrier; 1 affected but not <u>daughter/4;</u> who gets <u>X</u> from father; 		2
	(ii)	grandfather/1 passed on his (affected) X chromosome to his daughter/4; who was unaffected, because of the 'normal' X inherited from her mother/2; 9 inherited his X chromosome from his mother/4;	Total	2 max 6

(a)	(greatly) reduces growth of field grass seedlings compared to mine waste seedlings;		
	wider range of effects seen with mine waste seedlings;		2
(b)	copper harms/reduces growth in field grass/group M (more) resistant to/better able to grow on soil with lots of copper; group M have selective advantage/product of natural selection; group M have genes/alleles for copper resistance; (reject environmental arguments)		2 max
(c)	suggestion; and explanation; for example: mutation; producing allele for copper resistance/new protein for resistance; OR cross-breeding/pollination with group M plant;		
	introducing resistance allele;		2 max
		Total	6

SECTION B

(a)	no ce blast (chei grow	otrophic; ell walls; ula formation; nical and) nervous control; th not confined to meristems; h in plants;	
		ept have muscles)	3 max
(a)	•	um, Class, Order, Family;	
	Ensa	tina eschscholtzi;	2
(c)	(i) (ii)	<pre>(populations) isolated/in different areas; no interbreeding (between populations)/gene exchange/flow; variation in each (population); (accept example of variation) due to mutation/meiosis; (accept reference to types of mutation) each population adapting to its own/different environment; through natural selection; producing differential survival; producing changes in allele/phenotype frequencies; producing reproductive isolation; breed together salamanders from different areas; if fartile offenring, then still same species;</pre>	4 max
	(iii)	if fertile offspring, then still same species; phenotype depends on genotype and environment; different local environments can produce variation; different selection pressures; mutations producing new alleles; meiosis produces new combinations of alleles/example; random fusion of gametes / sexual reproduction	2 4 max
		Total	15

(a)	transp agains into s create	elial cell) of tubule cells carry out active transport; oort chloride/sodium ions out (of filtrate); st concentration gradient; urrounding tissue/tissue fluid; ss/maintains water potential gradient for water reabsorption; ercurrent multiplier;		5 max
(b)	leads ADH <i>(accep</i> water smalle	er potential of blood falls, detected by receptors in hypothalam to ADH released from pituitary gland; makes cells of collecting duct/distal convoluted tubule permea <i>pt DCT</i>) leaves filtrate by osmosis; er volume of urine produced; <i>pt converse if water potential of blood rises</i>)	-	water; 4 max
(c)	(i)	(autonomic reflex), autonomic ganglion involved; extra synapse outside the spinal cord; inhibitory rather than excitatory neurone; more neurones involved;		2 max
	(ii)	(full bladder) stimulation of stretch receptor; sends nerve impulses to spinal cord; synapse with neurone connecting to brain/nerve impulses go impulses from brain to inhibitory motor neurone; via synapse in spinal cord; external sphincter relaxes; internal sphincter already relaxed so bladder empties; (<i>1 mark for statement that both sphincters are relaxed for urt</i>		
		Т	otal	15
	. ~			

QWC (See guidance)

1