

GCE

Biology B

Unit BYB7

Section A

Copyright ${ }^{\bullet} 2003$ AQA and its licensors. All rights reserved.

Unit 7: Microbes and Disease

Question 1

(a) cell wall;
capsule;
(b) $130000 / 6.5$;

20 000; (Allow 1 mark for using 6.5 as the denominator)
(c) membranes (folded to increase the surface area);
(allow references to phospholipid bilayers - do not award references
to cell membranes)
(sites) for respiration / electron transport chain; contain electron carriers / cytochromes / enzymes; (do not allow references to glycolysis, Krebs cycle)

Question 2

(a) correct dilution step (for example, add $1 \mathrm{~cm}^{3}$ to $9 \mathrm{~cm}^{3}$ for a

1 in 10 dilution or $1 \mathrm{~cm}^{3}$ to $99 \mathrm{~cm}^{3}$ for a 1 in 100 dilution);
repeat dilutions to achieve 1 in 1000;
(allow maximum 1 mark if correct volumes are used to achieve
1 in 1000 dilution in a single step)
using sterile water / named sterile technique / mix; 3 max
(b) (i) colony / offspring from a single bacterium / growth of bacteria;

1
(ii) $14 \times 100000=1400000$;
$\times 10$;
(allow $14000000 / 1.4 \times 10^{7}$ for 2 marks);
2
(c) extra dilution introduces additional error / not mixed thoroughly; 1
(d) includes dead cells / a total count; 1

Total 8

Question 3

(a) enzyme is more stable / active / not denatured over a wider range of pH values / temperatures; sweeter milk not contaminated by / easily separated from enzyme; enzyme is reusable / not lost; 2 max
(b) larger surface area of beads; (disallow this mark if the enzyme acts on the surface of beads) more chance of enzyme substrate collisions;
(c) chromatography;
two spots on chromatography paper / no spot for lactose / no spot with $R f$ value equivalent to lactose;
or details of a quantitative benedicts test / a glucose biosensor / clinistix strips (for glucose);
(do not award a mark for biosensor unless the sugar detected by it is stated); suitable end-point (for example, no additional precipitate is formed / no further increase in glucose levels);
$\begin{array}{ll} & \\ \text { Total } & 2 \\ 5\end{array}$

Question 4

(a) phagocytosis / engulf and digest (allow ingest, destroy, inactivate); antigen presenting;
(b) receptors in hypothalamus detect change in body temperature; (reference to hypothalamus is sufficient)
impulses travel along neurons / nerves;
one of
to (muscles of) arterioles; causing vasoconstriction / contraction of muscles / less blood to flow into surface capillaries; less heat is lost from the body;
or causing shivering / rapid contraction of skeletal muscles; with increased rate of respiration / metabolism; generating (extra) heat;
or release of thyroxine / adrenalin;
with increased rate of respiration / metabolism;
generating (extra) heat;
or reduced / no sweating;
less / no evaporation;
less heat is lost from the body;
or hairs stand erect;
trapping insulating warm air; less heat is lost from the body; 4 max

Question 5

(a) amino acid;
(b) X at the end of either or both light chains;
(c) shape of antigen fits / binds / attaches / complementary to (shape of) antibody; (ignore references to active site)
(d) allows antibody to lock onto / (easily) make contact with antigen; more likely / able to make contact with 2 / more than 1 (identical) antigens; 1 max

Question 6

(a) uses / breaks up / digests host nuclear / genetic material (allow references made to DNA / RNA instead of nuclear / genetic);
virus DNA / genetic material inserted into hosts DNA / chromosome
/ genetic material;
host cells amino acids are used to synthesize viral proteins;
cell lysis;
by enzyme (produced by expressing a virus gene);
toxin production;
(b) (shape of) virus fits / binds / attaches to receptors / proteins in the cell membrane (of host);
(c) antigen / protein structure / shape changed by heat;
(do not allow virus is killed / destroyed or virus / antigen is denatured)
(d) one type of antigen / protein / shape / one strain of virus;
(allow virus does not mutate or virus does not change)
same immune response generated;
(e) Award a mark for damage caused to an organ only if it is
accompanied by a valid explanation about the effect of the damage.
$\left\{\begin{array}{l}\text { damage to the pancreas; } \\ \text { lack of / no insulin (produced); }\end{array}\right.$
$\left\{\begin{array}{l}\text { damage to liver; } \\ \text { insulin no longer affects (liver) cells / does not bind to receptors / } \\ \text { does not work / cells are impermeable to glucose; }\end{array}\right.$
$\left\{\begin{array}{l}\text { damage to kidneys; } \\ \text { no / less active transport of glucose (across tubule cells) / membrane } \\ \text { bound channel proteins destroyed; }\end{array}\right.$
less / no blood glucose converted to glycogen / taken into liver; kidneys unable to reabsorb (all) glucose;

Question 7

(a) infectivity is measured by the number of bacteria required to cause disease (symptoms) / infection; small numbers needed for S typhi; invasiveness is measured by the spread of the pathogen / bacterium /
typhi / toxin through the body;
S typhi spreads widely (from the point of infection) / in
blood / tissue fluid; 3 max
(b) bacteria present in faeces;
contaminate food / drinking water / people by shaking hands;
others are infected by consuming (inadequately cooked) food / drinking water / fingers put in mouth;
(c) for the principle that chlorampenicol could be a competitive /
non-competitive inhibitor;
details about the mode of inhibition (competition with a substrate
for the active site / changed shape of active site so substrate does not fit); translation (is affected);
effect on the role of tRNA (allow tRNA does not bind / not attracted to ribosome); effect on the role of mRNA (allow mRNA does not bind to ribosome / tRNA); peptide bonds do not form;
amino acids do not join;

