

GCE

Biology B

Unit BYB4

Copyright ${ }^{\odot} 2002$ AQA and its licensors. All rights reserved.

SECTION A

Question 1

(a) $\quad \mathrm{X}=$ grana/lamellae/thylakoid (membranes); $\mathrm{Y}=$ stroma;2
(b) $\quad \mathrm{NADPH}_{2} / \mathrm{NADP} \mathrm{H} /$ reduced $\mathrm{NAD} \underline{P} /$ reduced coenzyme; ATP;2
(c) carbon dioxide/ CO_{2}; 1
(d) (i) stroma; NOT "Y" 1
(ii) production/breakdown of starch (or equivalent); 1

Total 7

Question 2

| (a) Oryctolagus, Helix, Trichonympha; | |
| :---: | :---: | :---: |
| (not insisting on generic capitals) | any two for 1 mark |

(b) Animals, Protoctists, Prokaryotes;; (accept Latin equivalents) any two for one mark, all three for both 2
(c) that (they are) fertile; 1

Question 3

(a) Mark across whole of two parts in (a) to credit the following possible points

(structure)	Distant object	Close object
Cornea	- converges light/refracts/bends light;	
suspensory ligament	- in tension	- tension relaxed;
Ciliary Body	- relaxed;	- contracts;
Lens	- pulled thin;	- allowed to become fatter/more spherical;
	- the more convex/fatter the lens, the shorter focal length (or converse)	

Each itemised point in a box (-) worth one mark. Any 6 from 8 points.
(b) (i) only blue-(sensitive) cones/cells stimulated; 1
(ii) (mixture of) green- and red(-sensitive) cones/cells stimulated; 1
(c) value or range 575 to $600(\mathrm{~nm})$ (accept any range within 551 to 649 nm); $\quad 1$
(d) there are two phases/sections to the curve (or equivalent idea) OR one cell type reaches full sensitivity before other; (ignore any 'cell' identification if wrong)

1
(e) rhodopsin was bleached/is resynthesised; to/ from pigment/retinal; and to/from protein/opsin; any 2 from 3 2

Question 4

(a) (acetylcholine) made in/stored in synaptic vesicles;
released into (synaptic) cleft;
diffuses/moves across (cleft);
binds to protein/receptor molecules on (postsynaptic) membrane/neurone; causes depolarisation/action potential/new impulse (in postsynaptic neurone); any 3 from 5
(b) to provide energy for the (re)synthesis of Ach OR associated active transport;
(c) receptor detects stimulus;
impulse to muscle
(escape response effected by muscle to withdraw head into burrow)
muscle (M) longitudinal OR when it contracts it pulls animal shorter; no coordinator involved/only 3 neurones in reflex (arc);
reflex is 'automatic' (or equivalent point);
any 3 from 5
(d) (impulses) may cross synapses in one direction only/transmitter may only travel one way;
(e) (i) axon P myelinated;

OR axon diameter of P greater (than that of other axons);
(ii) (increased speed of escape response) increases the animal's chances of survival;

Question 5

(a) D

D;
1
(b) Krebs cycle; electron transport/transfer chain/oxidative phosphorylation; (glycolysis negates one point of credit)
(link reaction and glycogenesis etc. are 'neutral')
(c) some radioactivity in intermediates/other compounds (e.g. glucose);

ACCEPT idea of less present because of radioactive decay; NOT because of 'rounding off'
(d) $\quad(1200 / 8000) \times 100$;

15 (\%);
(allow (1800/8000) x $100=22.5 \%$ for 1 mark)
(2 marks for the correct answer as 15% without working, 1 mark for 22.5\%)) 2
Total 6

Question 6

(a) sandy stated as heterozygous/suitable allusion to alleles; suitable cross chosen; (as in table) N.B. second two points linked, not stand-alone explained why could not be codominance;

Suitable cross	Reason why not codominance
3 and 4	Offspring should all be sandy
10 and 11	Offspring should all be sandy
7 and 8	Offspring should all be read

BUT if candidate assumes sandy is homozygous, mark accordingly e.g. "look at cross 1 and 2; all their offspring would be sandy;" and not that, if red or white then identified as heterozygote, then full 3 marks are still possible.
(b) 11 aabb,
$10=\mathrm{AaBb}$, (N.B. only possibility, not $A-B-$)
$2=\mathrm{A} _\mathrm{bb}$ or aa B- (or one possible genotype);;
if all 3 correct - 2 marks/ if 2 correct - 1 mark; one or fewer - 0 marks
(c) 1 mark for each element of clear explanation i.e.

- choice of a suitable piece of evidence;
- explaining why Hypothesis 2 could not account for the observed result; (only cross really possible is 1 and 2) i.e. if sandy was aaB_, individuals 1 and 2 would both have been aaB; so their offspring could only be either white or sandy (as no A alleles present);
(d) (Mark line by line, not to 'first error': do not allow for consequential errors)

Parental genotypes		Indiv		Other parent No mark for this (Aabb)
Parental gametes	AB Ab aB			Ab ab;
Offspring	AABb	AAbb	AaBb	Aabb
	AaBb	Aabb	aaBb	aabb
	(Punnett not necessary			
Offspring	red		sandy	white
phenotypes				
Expected ratio	3		4	1;

SECTION B

Question 7

(a) (i) amino acids; 1
(ii) deamination/oxidation/redox; 1
(iii) liver; 1
(b) urea; (IGNORE ornithine cycle intermediates) 1
(c) (i) acetate/acetyl coenzyme A (and carbon dioxide); 1
(ii) matrix of mitochondrion; $\quad 1$
(iii) ATP; 1
(d) - detection by osmoreceptors;

- in hypothalamus;
- impulses to pituitary;
- pituitary produces/stores ADH; (IGNORE issue of anterior or posterior)
- ADH increases permeability of the collecting duct;
- of distal convoluted tubule;
- causes more water reabsorption;
- which raises blood WP;
- (negative feedback explained re.) explanation of norm level (of blood water potential);
- departure from the norm brings about a corrective mechanism, which restores the norm;
- ADH production inhibited/reduced if/as blood WP rises;

Any 8 from 11

Question 8

(a) (i) diagram should indicate: (appropriate) separation; and then either: homologous partners distinguished;
chromosomes shown made up of two chromatids;

2
(ii) $\mathrm{TB}, \mathrm{Tb}, \mathrm{tB}, \mathrm{tb}$;
(b) (i) if chromosomes segregate without crossing over, only two gametic types possible (TA \& ta);
crossing over enables exchange of chromosomal/genetic material (between them); so new/different combinations of alleles produced (or specific example); (below) any 2 from 3 (approach may also be diagrammatical)2
(ii) more normal gamete types/crossing over (between loci) necessary/ rareness of event;1
(iii) presence of chiasma/chiasmata; or drawn 1
(c) (1) independent assortment/random alignment of chromosomes; new arrangement of alleles;
(2) random fertilisation;
chance combinations of gametes;
(3) mutation (or suitable description of);
creates new alleles/allelic combinations (by changes in DNA); any two 'causes', to maximum of 4 from 6

$$
\begin{aligned}
& \text { (NOTE in any answer, full credit can be achieved only within TWO of } \\
& \text { possible three factors) }
\end{aligned}
$$

(d) (between the two groups)
discontinuous variation

- discontinuous variation because the two groups don't overlap;
- genetic difference/major environmental difference;
- 2 different alleles at locus; (or similar);

continuous variation

- continous variation as small sample size causes absence of 9-seed pods;
- probably caused by environmental factor(s);
- bimodal distribution explained as genetic difference/ major environmental cause;

(within each group)

continuous variation

- continuous variation as (complete) spread of seed numbers
(within range);
- because many alleles/polygenic;
- probably caused by environmental factor(s);
any 4 from 9
Total 15

