

Mark scheme June 2002

GCE

Biology B

Unit BYB1

(i) Nucleus:	~ •	
) Nucleus	•	

(ii) Correct answer $(3\mu m = 2 \text{ marks})$ error with measurement, but clearly derived by dividing drawing size by magnification = 1 mark;

2

- (b) (i) Ice-cold prevents <u>enzymes</u> working/autolysis/<u>self</u> digestion;
 - (ii) Isotonic prevents osmotic effects to organelles/osmosis/bursting/ shrinking;

2

(c) A;
Nucleus is largest/densest/heaviest organelle (sediments first/lowest spin speed);
(Reject reference to plant organelles/cell wall) 2

(d) O₂ uptake / ATP production / CO₂ production (not respiration / heat); 1

Total 8

Question 2

(a)

Beaker	Test using Benedict's solution	Test using Biuret solution	Boiled with hydrochloric acid, neutralised, then tested with Benedict's solution
1	Blue colour	Lilac colour	Blue colour
2	Blue colour	Blue colour	Brick-red colour
3	Brick-red/orange colour	Lilac colour	Brick-red colour
	;	;	;

Each column all correct for 1 mark = 3 total (MUST be a colour); 3

- (b) Rf = distance spot travels (39/42); distance front travels (96/97) 0.40 - 0.44; (correct answer = 2 marks)
- (c) **B** = glucose **C** = fructose; (Both correct for 1 mark, but any order) 1
 - Total 6

2

(a)

(b)

Function	Phospholipids	Protein
May act as hormone receptors	×	>
May act as enzymes	×	~
Involved in active transport	×	>

Mark as columns. All correct for 1 mark.

Active transport/uptake; Ions accumulated/move/go against a concentration gradient/highER 2 Concentration (inside root hair) (not larger number) (minerals = neutral);

> Total 4

2

Question 4

(a) One cell thick/thin (not thin membrane)/flattened cells for <u>faster</u> diffusion/shorter diffusion pathway; (Reject greater/more) Large surface area for <u>faster diffusion</u>; (Reject greater/more) Ventilation to maintain a diffusion/concentration gradient; 2 max NB TWO correct features = 1 mark maximum

2

(b) (i) Decreases first from zero; Then increases to zero; 'U' shape (not starting at zero) = 1 mark maximum

2

1

(ii) $\underline{60} = \underline{20};$

> Total 5

Question 5

Secretion/release of enzymes (or described) not excretion; (a) Absorption of/takes in (soluble) products/named soluble product/nutrients/food; <u>Principle</u> of extra-cellular digestion (e.g. breaks nutrients down outside cell) = 1 mark;

2 max

(b) Mitochondria release/supply energy or release/supply/produce/make 2 For synthesis/growth/cell division/mitosis/active uptake; 4

> Total 8

(a)	(i)	Activation energy;	1
	(ii)	Activation energy lower, but within peak; Curve starting and finishing at original energy levels; (Higher curve disqualifies)	2
	(iii)	pH drops/lowers/becomes acidic; Fatty acids formed (when lipase breaks down lipids);	2
(b)	(i)	Correct placement of X on stomach/pancreas;	1
	(ii)	Correct placement of Y on liver (Reject gall bladder);	1
	(iii)	Emulsifies/produces small droplets (of triglycerides); Increases surface area/large surface area available (digestion); OR Neutralises (stomach) acid; Optimum pH for lipase/enzymes (wrong enzymes named = disqualify);	2
		Total	9

Question 7

(a) <u>Temperature</u>

Rate of reaction increases;

Increasing temperature increases rate of movement of molecules/kinetic energy; Collide more often/substrate enters active site more often/more enzyme-substrate complexes formed;

Up to optimum;

Rate of reaction decreases;

High temperatures cause denaturation/loss of tertiary structure/3D structure;

By breaking specified bonds (not peptide bond);

Active site altered/substrate cannot bind/fit/

N.B. If graphically explained, axes must be labelled or scores 0 marks.

(b) (i) Inhibitor is a different shape to substrate;

Binds at position other than active site/allosteric site;

Alters shape of <u>active site</u>;

Substrate cannot bind/enzyme-substrate complex not formed;

4

(ii) <u>Competitive inhibition;</u>

Ethanol/ethylene glycol compete for same active site;

Molecules similar shape (not same)/both complementary to/both fit active site;

Prevents/slows production or build up of oxalic acid/toxic products;

Ethylene glycol excreted (without causing death);

4

Total 14

(a)		Chemical reactions occur in solution;				
		Allows transport/secretion/excretion/dispersal of substances;				
		High specific heat capacity (e.w.) so minimises temperature fluctuations;				
		High latent heat of evaporation so cooling effect of sweat/transpiration;				
		Provides internal support e.g. hydrostatic skeleton/amniotic fluid/turgidity;				
		Provides external support e.g. aquatic organisms;				
		High surface tension e.g. pond skaters, cohesion-tension;				
		Transparent e.g. allows light penetration for aquatic organisms;				
		Less dense when frozen so ice floats and insulates;				
		Reactant e.g. hydrolysis/photosynthesis;				
		Lubricant e.g. synovial fluid/pleural fluid/mucus;	5			
(b)	(i)	Initial mass of cylinders not identical;				
		To be able to directly compare the results;	2			
	(ii)	From 0.3 mol dm ⁻³ to 0.1 mol dm ⁻³ water moves into potato cells;				
	. ,	By osmosis;				
		So mass increases;				
		More water has entered potato cells 0.1mol dm ⁻³ / converse;	4			
	(iii)	0.35;				
	` /	No mass change/no <u>net</u> osmosis/volume of water in = volume of water out;	2			
(c)		Range from -511 to -549 kPa;				
` /		Reason e.g. Water moves from A to B, so must be lower than -510 and				
		Water moves from B to C, so must be higher than -550;	2			
		Total	15			

Quality of Written Communication 1