

GCE

Biology B

Unit BYB4

SECTION A

Question 1

(a) $\quad \mathrm{A}=$ rods AND $\mathrm{B}=$ cones;
(b) Fovea centralis / fovea / yellow spot; 1
(c) more receptor cells at $8 /$ fewer receptor cells at 12 OR cones present in 8 / cones not present in 12; cones capable of greater acuity (than rods); because each cone has / is more likely (than rods) to have its own ganglion / bipolar cell / nervous supply;

Question 2

(a) (i) Centromere; 1
(ii) Attaches (chromatids / chromosomes) to spindle (in cell division) OR divides to separate chromatids;

1
(b) Chromatids; 1
(c) Haploid, because no homologous / paired chromosomes present / allow "because all the chromosomes are different";

Total 4

Question 3

(a) (i) (Kidneys) function: removes urea from blood, evidence from graph: when kidneys not working the level of (blood) urea rises;
(ii) (Liver) function: makes urea / adds urea to blood, evidence from graph: no rise in urea (when liver not working) OR when working, urea not removed, so level rises;
(b) Shown on graph. Firstly need to demonstrate change in gradient at 12 hours.
Time 0 to 12 hours - steady decline in urea level (below line Q); Curve horizontal from 12 hours;
Still award full credit if the line falls to x axis within first 12 hours and remains on the x axis thereafter.

Question 4

(a)
Condominance;
(Allow incomplete / inheritance without dominance)
(b) $\quad \mathrm{X}^{\mathrm{B}} \mathrm{Y}$ OR B(-);
(c) Parental genotypes are given: $\quad X^{R} X^{R} \quad\left(X^{B} Y\right)$ - no mark

Offspring 1 genotypes: $\quad \mathrm{X}^{\mathrm{R}} \mathrm{X}^{\mathrm{B}} \quad \mathrm{X}^{\mathrm{R}} \mathrm{Y} \quad$;
Offspring 2 genotypes: $\quad \mathrm{X}^{\mathrm{R}} \mathrm{X}^{\mathrm{R}} \quad \mathrm{X}^{\mathrm{R}} \mathrm{X}^{\mathrm{B}} \quad \mathrm{X}^{\mathrm{R}} \mathrm{Y} \quad \mathrm{X}^{\mathrm{B}} \mathrm{Y} \quad$;
Offspring 2 phenotypes: round eyed wide-bar round eye bar-eye
female female male male ; 3
Ratio: 1 : 1 : 1 : 1
(Ignore ratio unless it contradicts: be alive to other possible ratios)
(No marks as such for "gametes", though may inform markers
where unclear.)
Total

Question 5

(a)
(Radioactive) carbon dioxide is used / incorporated;
New compound(s) / intermediate(s) / names egs formed /
become labelled;
(b) (i) Because stops reaction(s)/ process / pathway / enzyme action /
kills algal cells;
(ii) Because reactions occur quickly

OR need to remove samples after short / precise time;
(c) $\mathrm{Q} \rightarrow \mathrm{R} \rightarrow \mathrm{S} \rightarrow \mathrm{P} \quad$;
(d) Idea of cycle (or equivalent);

Compound Q is used / reformed;
If either above present allow identification of possible Q as: G3P /
PGA / triose phosphate / GALP / RuBP
Any two from three (noting special arrangement re. third point)

Question 6

(a) Phylum,

Order,
Genus;
Any 2 score 1, all three gain 2 marks
(b) F. serratus and F. spiralis;

Highest \% value (for non-self);
The more closely related they are, the more similar their DNA;
Explanation of value / complementarity in terms of joining strands; 3 max
(Special case: if spiralis / spiralis given, then max 1 possible if complementarity explained)

Total 5

Question 7

(a) Reduced light intensity;

Receptors identified as in retina / rods / cones;
Nerve impulses to CNS / along sensory nerve;
Nerve impulses from CNS / motor;
Sympathetic action;
To radial muscles which contract; 3 max
(b) (i) Prevents parasympathetic NS from working

OR allows sympathetic nervous system to work unopposed;
1
(ii) Eserine (no mark itself) involves acetylcholine;

Inhibits enzyme which normally breaks down Ach OR stops it
being broken down;
Effect of Ach / parasympathetic effect not stopped / enhanced e.g.
"AcH continues to bind to receptors" or similar; 2 max
Total 6

Question 8

(a) Carbohydrate / named example from food / diet / gut; 1
(b) (i) Pancreas;
(ii) (1 for each hormone correct / per column)

Effect of hormone	Insulin	Glucagon
Reduces carbohydrate in reservoir D		\checkmark
Promotes A - fat breakdown	\checkmark	
Promotes C - protein breakdown		\checkmark
Increases rate of outflow at E	\checkmark	

(c) (i) Glycogen; 1
(ii) Fats / lipid / triglyceride / adipose; 1
(d) (Adrenaline) D;
(Thyroxine) E;

Question 9

(a) The higher the altitude, the lower the frequency (or converse); Below 400 m altitude, frequency levels off / pretty constant;
(b) (Higher frequencies found at certain (low) altitudes because)

Malaria found mainly among people at low altitudes;
Because warmer here OR more sources of still / slow-moving water; t allele / heterozygous condition confers some resistance against malaria; Selection operates / heterozygotes favoured over homozygous (dominant);

3 max
(c) Mainland Italians didn't bring / import the t allele with them OR hadn't been exposed previously to malaria;
Malaria not / less of a factor in Sardinia since Carloforte established; Insufficient time / generations for selection to operate / have an effect; 2 max

SECTION B

Question 10

(a) Needed to make ATP / for phosphorylation;
(b) (Oxygen) needed for formation of ATP / phosphorylation; (Oxygen) used (so its level falls);
(Oxygen) reacts (with 'H') to produce water;
In the electron transport chain / at terminal acceptor;
Allows recycling of reduced coenzymes / NAD / FAD;
(c) Because equal amounts of ADP were added;
(d) Less oxygen available in medium at Z than at Y OR because oxygen all used up / 'runs out';
(e) (i) Glucose cannot enter mitochondria BECAUSE too large to enter / no carrier system for it;
OR glucose cannot be metabolised / equivalent BECAUSE necessary enzymes not present;
(Note single marks here for a suitable suggestion, and for a connected, plausible reason / also that suggestion and reasons may 'cross over'. Allow, each for 2: "no cytoplasm, no glycosis, not to pyruvate")
(ii) Label glucose and determine its failure to enter mitochondria;
'Break' mitochondrial membrane (to allow entry of glucose);
'Release' appropriate enzymes from mitochondrion;
Add glycolytic enzymes / 'cytoplasm' to medium in advance;
(OR suitable suggestions re. possible reason previously given)
Structure of sarcomere explained re. chains of sarcomeres in fibres;
Actin - thin filaments, myosin - thick filaments;
Relating sarcomere structure to thin / thick filaments
OR acting / myosin;
Idea of sliding filament hypothesis;
Cross bridges formed between actin and myosin;
ATP to ADP releasing energy;
ATP / energy required for detachment / re-attachment;
Explanation of ratchet mechanism;
Need for Ca^{++}to move tropomyosin out of way / change its shape;
Movement of tropomyosin allows attachment;
Need for Ca^{++}in splitting of ATP;
6 max
(Note that answers may use annotated diagrams)

Question 11

(a) (Gene 1) allele A makes enzyme converting J to K / colourless to red; Allele a produces no / non-functional enzyme;
(Gene 2) allele B makes enzyme converting K to $\mathrm{L} /$ red to purple;
Allele b produces no / non-functional enzyme;
("Recessive alleles produce no / non-functional enzyme" $=2$)
White flowers result from genotype aa;
... regardless if B or $\mathrm{b} /$ even if aaB _;
Colourless (substance) / J produces white;
Red flowers when A_bb / enzyme 1 only;
Purple flowers when A_B_/ enzymes 1 and 2; 6 max
(b) (i) (1) (red parent) AAbb;
(2) (white parent) aaBB;
(ii) F_{1} are AaBb ;
F_{2} ratio of $9: 3: 4$;
Purple : red : white;
Suitable working shown;
(c) (i) $a a b b, a a B b$, and $a a B B ;$ (allow $\left.a a b b \& a a B _\right)$
(ii) (Crush each type of white petal to make an extract, and)
add some of the (red) pigment / K, to petal OR incubate with K;
(extract becoming) purple is identified as aaBB OR that staying red, after K is added, is aabb;

