

ASSESSMENT and QUALIFICATIONS ALLIANCE

Mark scheme January 2002

GCE

Biology B

Unit BYB1

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: Director General

(a)		Biuret reagent / Add NaOH and CuSO4; (ignore heated)		
		Positive result = violet/mauve/lilac/purple coloration; (<i>NOT blue</i>)	2	
(b)	(i)	Nitrogen / N; ($NOT N_{2}$)	1	
	(ii)	Condensation;	1	

(iii) Must have box correct (allow HN/NH, but must have C=O correct)

Total 5

Question 2

(a)	(i)	X 6.2;		1
	(ii)	Active transport / active uptake;		1
(b)		Ref. to carrier/intrinsic/pore/gate/transport/pump proteins; Ref. to different numbers of carrier proteins; Ref. to specificity / different types of carrier proteins; Ref. to charge / size of ion;		2 max
(c)		For respiration; Energy for active transport;	Total	1 max 5

Question 3

(a)		A = Epithelium (<i>ignore type of epithelium</i>) / Endothelium;		1
(b)		Muscle;		1
(c)	(i)	$\mathbf{X} = Mitochondria;$ $\mathbf{Y} = Microvilli / brush border;$		2
	(ii)	X = Provide energy/for active uptake;Y = Increase surface area;		2
			Total	6

~		
(a)	82%	1
(b)	Concentration gradient maintained over whole lamella; Diffusion gradient maintained / oxygen taken up over whole lamella; Equilibrium never reached;	2 max
(c)	$\begin{array}{c c} \checkmark & & & \\ \hline & & & \checkmark \\ \hline \checkmark & & & \\ \hline \checkmark & & & \\ \hline \end{array}$	
	Parana and mark for each incorrect tick to minimum mark of zone	2
(d)	Decreases surface area; (Thick wall) slows down diffusion rate / increases diffusion pathway; (<i>NOT less diffusion</i>)	
	Mask increases concentration gradient / difference;	3
	Total	8

Question 5

(a)		Faster gas exchange / diffusion;		
		Large / big / increased surface area / shorter pathway for		
		gas exchange / Hb not too far from membrane;		
		(NOT more / bigger / greater / easier / more efficient)		
		<u>OR</u>		
		Increases flexibility;		
		To pass through capillaries;		2
(b)		Protein synthesis / Cell division / Mitosis; (NOT Meiosis)		1
(c)	(i)	Monolayer;		
		Tails up / heads in water;		2
		(NOT completely submerged or floating in air)		
	(ii)	0.5 / ½;		
		Phospholipids are arranged in a bilayer;		2
			Total	7

Question 6

(a)	Osmosis transports water; Proteins / carrier molecules not used / occurs through phospholipid bilayer;		2
(b)	Jam has a lower (more –ve) water potential than the bacterial cytoplasm; Water leaves the bacteria; Effect (of water loss) on bacteria e.g. killed / chemical reactions		
	cannot occur;	Total	3 5

(a)		Active site;		1
(b)		Substrate enters active site;		
		Complimentary shapes / Lock and Key;		
		(Binding) to form enzyme-substrate complex;		
		Lowering of activation energy;		
		Conformational / shape change;		
		Breaking of bonds in substrate;		
		Products no longer fit active site and so are released;		4
(c)		Molecule A binds at site away from active site / allosteric site; Causes enzyme / active site to change shape; Molecule B can enter / competes for active site;		
		complex formed / active site blocked;		4
(d)	(i)	Secretes enzymes (for extra-cellular digestion);		
		Absorbs <u>products;</u>		2
	(ii)	Optimum pH is 7 / neutral / between 6 and 8 / between 7 and 8;		1
	(iii)	Max rate = $\frac{\text{Distance}}{\text{Time}}$ / $\frac{11}{4}$ / $\frac{11}{4 \times 60}$;		2
		[Correct answer = 2 marks <i>(IGNORE units)</i> e.g. 2.75 mm / hour, 0.046 mm/min, 4.6 x 10^{-3} mm/min 1 mm/ 21.8 mins, 23.76mm ² /hour]		
			Total	14

(a)		(H ₂ N)-Asn-Val-Tyr-Met-Ile-Tyr-Trp-Cys-Asn-Pro-His-Lys-(COOH)	
(b)		<u>Both</u> correct = 1mark ; Correct = second mark; B ; Fragment 3 is the second biggest molecule and so will travel second least distance:	2
(c)		Rf = Distance travelled by spot; $\underline{79 \text{ mm}}$ to $\underline{82 \text{ mm}} = \underline{0.61 - 0.64}$ Distance travelled by front 129 mm 129mm MUST be 2DP Correct answer = 2 marks	2
(d)	(i)	A; As there are two molecules composed of 5 aa / the same size / contains fragments 2 and 5;	2
	(ii)	Use 2 way/2D chromatography / Rotate chromatogram 90°; Use a different solvent;	2
(e)		Long chains of aa; Folding of chain into a coil / folds / helix / pleated sheet; } 1 Association of several polypeptide chains together; } 2 H bonds / Disulphide bonding (In context);	
		Fibres provide strength (and flexibility); <u>Sheets</u> provide flexibility; Example e.g. keratin in hair, collagen in bone; (<i>MUST be in context</i>) Insoluble because external R-groups are non-polar; Total	5 15

QWL 1