

GCE

Biology A / Human Biology

Unit BYA6

Copyright ${ }^{\circ} 2002$ AQA and its licensors. All rights reserved.

Question 1

(a) Picks up oxygen more readily (in lungs) / greater affinity / idea of more readily saturated;
Where O_{2} is low;
Ignore 'rate of loading / unloading'.
(b) (i) Can bind to / release H^{+}ions;

Allow correct equation.
(ii) Denatures / alters shape / charge of active site;

Breaking / forming bonds / named bond; reject 'peptide'
Substrate "repelled" / cannot fit / no E-S complex;
Total 5 marks

Question 2

(a) High / increasing glucose causes high / increasing insulin; Ignore 'deviates from the norm'.
Insulin (concentration) reduces glucose;
Ignore references to 'glycogen'.
Back to original level;
This results in / subsequent decrease in insulin level / release;
Ignore references to 'brain'.
(b) (i) Drink in a specified (short) time;

Idea of fasting / controlled diet shortly before test;
Same level of activity (as $1^{\text {st }}$ test);
Same (specified) temperature of drink;
Ensure glucose level returns to normal before test;
2 max
Ignore references to timing of sampling.
(ii) Excreted in urine / respired;

1
Reject 'secretion in urine'.
Total 5 marks

Question 3

(a) (Vaso) constriction of arterioles / correct reference to shunt vessels or sphincters; ignore contraction Reject this first mark if any reference to moving blood vessels. Less radiation / conduction / convection; Less blood to surface / more blood flows beneath fat; 2 max
(b) (i) Body cools down / hypothermia;
(Low body temperature linked to) insufficient metabolism /
muscle contraction; accept references to enzymes / respiration /
energy released
May drown / unable to escape predators;
(ii) Oxygen consumption linked to respiration;

Heat production linked to respiration;
High rate of respiration / more heat production at low temperature; accept converse 2 max
Reject any reference to 'energy production'.
Total 6 marks

Question 4

(a) (i) Reduces (exposed) surface area so less water loss; $\quad 1$
(ii) Ammonia toxic so cannot be stored / must be excreted / needs lots of water / ref. to dilution;
Urea less toxic so can be stored / needs less water for excretion;
Give maximum of one mark if no reference to 'toxic' in answer but a comparison has been made.
(b) (i) Requires energy / ATP; $\quad 1$
(ii) From respiration / condensation;

Question 5

(a) Accurate description of ventilation by water flow;
(Oxygen) removal by bloodstream;
Description of / countercurrent flow of blood and water (at gills);
Accept labelled diagram, ignore 'contraflow', reject 'multiplier'.
(b) 4.0 seconds $/ \underline{\mathrm{s}}$; accept $2 \times 2 \mathrm{~s}$

1
(Total) time when oxygen (concentration) was increasing /
oxygen diffusing in;
OR
(Total) time when carbon dioxide (concentration) was decreasing / carbon dioxide diffusing out;

Question 6

(a) Pituitary; 1Ignore any reference to lobe / hypothalamus.
(b) (i) (Each) protein has a tertiary structure;
Gives specific / correct shape / size to (inside of) channel / pore; 2
(ii) More negative / lower WP (inside tubule cells); accept Ψ symbol /
down a WP gradient
Water enters / moves by diffusion / osmosis; ignore water concentration, etc.

Question 7

(a) (Pressure) deforms / opens (sodium) channels; reject any other ion Sodium ions enter;

> Causing depolarisation;

Increased pressure opens more channels / greater sodium entry;
2 max
(b) (i) Arrow (labelled K) pointing out of node; 1
(ii) Same amplitude of action potentials as in medium pressure graph but of a greater frequency;
(c) (i) Answer between 0.7 and $0.9(\mathrm{~ms})$;
(ii) Correct answer based on candidate's response to (c) (i)
(i.e. 80 divided by answer to previous question)

1
Accept correct working shown with no final answer
(d) (i) Action potential / impulse unable to "jump" from node to node / no saltatory conduction / action pd / impulse must pass through a greater amount of membrane;
Slows / prevents impulse;
2 max
(ii) Greater entry of sodium ions / greater exit of K^{+}in
de-myelinated neurone;
Ref. to active transport / ref. to ion pumps;
2
(e) (i) Kinesis; ignore prefix 1
(ii) Response is non-directional / related to intensity of the stimulus; $\quad \mathbf{1}$
(iii) Idea that tentacle behaviour is genetically controlled;

Idea of variation in population regarding speed of tentacle movement;
Individuals with ability to increase tentacle movement more
likely to reproduce / pass on characteristic;
Over many generations increasing frequency of allele(s) for this type of behaviour;

3 max
Maximum of one mark may be awarded if no reference to tentacle / feeding behaviour.

Question 8

(a) (i) Hydrolysis; 1
(ii) For new cells / growth; 1
(b) (i) Microbial / bacterial enzymes / bacteria (in gut); reject 'protozoa' in context of N fixation OR ignore.
Produce amino acids (from nitrogen gas / by nitrogen fixation);
(ii) TERMITE context:

Microorganisms consume glucose / produce methane / organic acids / fix N; Accept converse for PEACOCK BUTTERFLY context. Reject references to incorrect organism.
(iii) Nitrogen is a large component of air / oxygen is small component; (So) only a small amount of air needed for nitrogen fixation; Oxygen removed by respiration (of microbes / termite cells);
(c) $\quad \mathrm{C}=$ Microvillus and $\mathrm{E}=$ Mitochondrion;

Accept $A=$ lysosome $/$ veside / vacuole
$B=$ nuclear membrane / envelope
$D=E R /$ rough $E R$ (reject smooth $E R$)
Accept any two correctly named, labelled features.
Microvillus / C increases surface area;
So greater diffusion / active uptake / greater number of protein channels / carriers;
Mitochondria / E produce ATP / release energy; reject 'making energy' For active transport;
(d) (i) For nervous system:

Mainly electrical impulses not chemicals;
Use of neurones not blood;
Discrete compared to broadcast;
Shorter lasting;
Quicker;

(ii) Stimulates:

Production / secretion of bile / alkali from liver;
Production / secretion of alkali from pancreas;
Ignore 'pancreatic juice'. Reject 'enzyme secretion'.
Smooth muscle contraction / emptying of gall bladder;
Inhibits gastric gland secretion;

Question 9

(a) Root pressure:

1. Active transport of salts into xylem;
2. Endodermis / Casparian strip;
3. Prevents leakage / water / ions must use symplast pathway;
4. Lower water potential inside xylem;
5. Water (enters xylem) down WP gradient / by osmosis;
6. Upward water movement by root pressure is relatively low; 4 max

Cohesion tension:
7. Transpiration / evaporation of water;
8. From spongy mesophyll / through stomata;
9. Lowers water potential of mesophyll;
10. Water molecules hydrogen bond / stick together;
11. Ref. to columns / chains;
12. Water pulled up xylem (creating tension);
13. Adhesion between water molecules and xylem vessel walls;
14. Responsible for majority of water movement up xylem vessels; Only credit if earlier reference to limited water movement by root pressure has not been credited.
$5 \max$
(b) Trap moist air / increase humidity;

Reduce air flow (around leaf surface / stomata);
Lower WP / water vapour concentration gradient (between inside
and outside of leaf);
Shield stomata from high temperature / high light
intensity / wind; ignore 'sun'
Reduce transpiration / evaporation / diffusion of water (vapour);
4 max
(c)

EITHER:

Plasmid / virus / bacterium (vector is one of these);
Vector / Yambean DNA / gene cut open with restriction enzyme;
Same enzyme used to cut other DNA;
Production of sticky ends;
Joined by ligase;
OR:
(Vector is) bacterium / plasmid / virus; Vector DNA cut open with restriction enzyme; Use reverse transcriptase / mRNA to make gene / DNA; Add sticky ends; Joined by ligase;

