

GCE

Biology A / Human Biology

Unit BYA1

Copyright ${ }^{\odot} 2002$ AQA and its licensors. All rights reserved.

Question 1

(a)

Cell	Feature		
	Plasma membrane	Nucleus	Cell wall
Red blood cell	\checkmark	\mathbf{x}	\mathbf{x}
Lymphocyte	\checkmark	\checkmark	\mathbf{x}
Photosynthesising cell from a leaf	\checkmark	\checkmark	\checkmark
Bacterium	\checkmark	\mathbf{x}	$\mathbf{\checkmark}$

Mark down, one mark for each correct column.
3
(b) (i) Any two from:

Cellulose / starch / amylose / amylopectin;
1
Do not allow starch with amylose or amylopectin.
(ii) $1500=2$ marks;;

Error with units but answer clearly derived by dividing drawing size by actual size = 1 mark;
(iii) (Focused) at different level / depth;

Looking at different structures / parts of structure;
2

Total 8 marks

Question 2

(a) (i) (Polypeptide is) coiled / folded;
(ii) Way in which whole molecule is folded / globular shape / folding of secondary structure / further folding /
Do not accept $3 D$ shape if not further explained.
Structure held by ionic / disulphide bonds; reject hydrogen
bonds / peptide bonds only.
1
(iii) Causes bonds which hold the tertiary structure / named bond;

To break;
Shape no longer maintained / protein denatured;
2 max
(b) (i) 5 ;
(ii) Substrates / active sites with shapes;

Active site / substrate with complementary (shape);
Fitting / binding / forming E-S complex;

Question 3

(a) Bilayer / two molecules thick;
"Heads" / hydrophilic parts outwards / "Tails" / hydrophobic parts inward;
Credit information provided in a diagram, labelling essential for second marking point.
Reject 'water loving' / 'water hating'.
(b) Only parts of membrane with receptors / molecules into which surface proteins will fit / recognition / binding sites;
(c) Endocytosis / phagocytosis / pinocytosis; 1

Reject 'cytosis'.
(d) (i) Lysosome; 1
(ii) Enzymes;

Digests / breaks down / hydrolyses (other molecules); 2
Reject 'cholesterol'.
Total 7 marks

Question 4

(a) Thin / single layer of cells / large surface area;

Do not accept references to 'moist surface'.
(b) Smaller surface area;

For diffusion of carbon dioxide from blood / into lungs /
diffusion slower;
2
Reject second point if answer referring to oxygen only.
(c) (i) Greater concentration / number of red blood cells;

More haemoglobin (to carry oxygen);
2
(ii) (For the body to produce) more red blood cells;

Link established between red blood cells and transport of oxygen;
2
Total 7 marks

Question 5

(a) (i) Activation energy / amount of energy required for reaction;
(ii) Curve starting and finishing at correct energy levels; Activation energy lower (i.e. less than x);

2
(iii) Energy in products less (than in substrate / hydrogen peroxide);

Energy given off / lost as heat / exergonic / exothermic;
2
(b) (Molecules have) less (kinetic) energy;

Move slower;
Fewer collisions / fewer enzyme-substrate complexes formed;
Total 7 marks

Question 6

(a) (i) Units include both volume and time; 1
(ii) Heart beats faster so more blood leaves heart in given time / increased cardiac output;
Needs reference to given time in order to explain rate.
(b) 1. Impulses;
2. Along sympathetic / (cardiac) accelerator nerve;
3. Increases rate of discharge / contraction;
4. Of SAN / pacemaker;
5. No / fewer impulses;
6. Along parasympathetic / vagus nerve;

3 max
(c) Amount of oxygen (falls) in veins from muscles; 1
(d) More blood is flowing to lungs;

More oxygen can diffuse / pass into blood from alveoli / lungs;
More oxygen in blood in pulmonary vein / arteries to body;
2 max
Total 8 marks

Question 7

(a) (i) Atoms / named atoms arranged differently / isomers; $\mathbf{1}$
(ii) $\mathrm{C}_{12} ; \mathrm{H}_{22} \mathrm{O}_{11}: \quad 2$
(b) (i) Facilitated diffusion is movement from high to low concentration / down concentration gradient; reject 'across' / 'along' Facilitated diffusion does not require energy / ATP / is passive;
(ii) Produces greater water potential gradient / lower / more negative water potential in cells / less negative / higher water potential in intestine;
Water moves (into cells) by osmosis / diffusion;
(c) Based on central carbon atom / α-carbon;

COOH group;
NH_{2} / amino group;
H;
Allow information on diagram. Do not accept 'both have an R-group'.
(d) Method

1. Load;
2. Method of producing small spot;
3. Repetition to concentrate;
4. Assemble apparatus with solvent below origin;
5. Leave until solvent near top of paper;
6. Use reagent to identify / show up sugars / mark solvent front;
7. Turn through 90° / separate further with / use another solvent with 2-dimensional chromatography;
Maximum of 4 marks from this section

Identification

8. Calculate Rf value;
9. By dividing distance moved by spot by distance moved by solvent;
10. Look up in table / compare with standard values;

OR
11. Compare distance moved;
12. With distance moved by known substance;
13. On same chromatogram;

Maximum of 2 marks from this section

Question 8

(a) (i) Filling time stays constant / increases very little / as heart rate increases;
Decrease in contraction time as heart rate increases;
Allow maximum of 1 mark if no reference to heart rate.
(ii) Work out time for one heart beat / one heart beat takes 1 second;

Subtract filling time / 0.38s;
Credit these basic points however determined. If the calculation
has been done, credit any point in method clearly explained. OR
Plot contraction time against heart rate;
Read off value for 60 beats per minute;
(iii) Stroke volume / volume of blood pumped out at each beat;
(b) (i)

Valve located between	Open	Closed
Left atrium and left ventricle		\checkmark
Left ventricle and aorta	$\checkmark ;$	
Right atrium and right ventricle		\checkmark
Right ventricle and pulmonary artery	$\checkmark ;$	

(ii) Pressure constant / smooth in vein / only have pressure surges in artery;

1
(iii) Contraction of ventricle / systole / entry of blood into aorta;

1
(c) 1. At (arteriole) end of capillary;
2. Hydrostatic / blood pressure;
3. Forces out soluble / small molecules;
4. And water;
5. Protein remains in blood / plasma;
6. Molecules too large;
7. More negative / lower water potential at (venule) end;
8. Water drawn in by osmosis / diffuses in;
9. Some fluid returned (to blood) by lymphatic system;

