

A-LEVEL Applied Science

SC05 Choosing and Using Materials Mark scheme

8770 June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright $\ensuremath{\mathbb{C}}$ 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Question	Answers	Additional Comments/Guidance	Mark
1(a)(i)	Nylon / Perspex		1
1(a)(ii)	Brick / glass		1
1(a)(iii)	 (An alloy is) a mixture of elements in which at least one is a metal. 	Accept 'a mixture of metals'.	1
1(a)(iv)	Made of more than one material GRP / concrete		1
1(a)(v)	One of: • to gain the properties of each material • better (or improved) properties • desired properties	NOT: just 'stronger'	1
1(a)(vi)	Man-made / not natural		1
1(b)	Irregular structure / non-crystalline	Accept 'without shape'	1
1(c)	Expensive	NOT: 'cost' alone	1
Total			10

2(a)(i)	Material HTS HCS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	All 4 correct = 2 marks. 3 correct = 1 mark. 1/2 correct = 0 marks	2
2(a)(ii)	Flexible		1
2(b)(i)	 Axes in correct place with suital labelled (name and units) All 7 points plotted correctly (± I square) 	ole scales and nalf a small	1
	Straight line of best fit passing t	hrough the origin	1
2(b)(ii)	1.8 N or as read from candidate's g	raph	1
2(b)(iii)	 Tensile strength is (directly) process-sectional area. Straight line graph that passes origin 	opportional toAccept a mathematical statement indicating proportionality, e.g. if CSA doubles so does the tensile strength.A simple statement such as 'tensile strength increases as CSA increases' gains 0 marks.through theDo not accept 'positive correlation' unless	1
	ongin	qualified.	
2(c)	One of: • stiffness / flexibility • brittleness • ductility • malleability • elasticity • plasticity • hardness • toughness		1
Total			10

	Material A		1
3(a)(i)	 Any 2 from: highest thermal conductivity highest electrical conductivity highest density 	Accept largest instead of highest Must be a superlative	2
	Material D		1
3(a)(ii)	 Any 2 from: lowest thermal conductivity lowest electrical conductivity lowest tensile strength 	Accept smallest instead of lowest	2
		Must be a superiative	[
	Rate of flow of heat per unit area per unit temperature gradient		
3(b)	or		1
	Heat conducted per second ÷ (cross-sectional area × temperature gradient)		
	In any order:		
3(c)	length		1
	cross-sectional area		I
3(d)(i)	(Density is) mass per unit volume	Accept : density = mass ÷ volume	1
	Volume = mass ÷ density = $(1.61 \times 10^{-2}) \div (2.30 \times 10^{3})$ = $7.0 \times 10^{-6} \text{ m}^{3}$	Correct answer with or without working gains all 3 marks	
	$= 7.0 \times 10^{-111}$ = 7.0 cm ³	Correct formula /	2
3(d)(ii)	So Y = $75 + 7 = 82$ (cm ³)	substitution gains 1 compensation mark	1
		Correct answer of 7 gains	
		Max 2 compensation marks	
Total			13

4(a)(i)	Covalent (bonding)	NOT: 'convalent'	1
4(a)(ii)	Electrons are shared (between atoms)	Accept correct statement about ionic bonding if 'ionic' is given as answer in 4(a)(i)	1
4(a)(iii)	Double (covalent) bond / C=C		1
4(b)	In any order: • softness • flexibility	Both correct for mark	1
4(c)	 Diffuse / leak out of / escape from products Get into food / air / soil / people eat contaminated food / breathe contaminated air / touch contaminated soil 		1 1
4(d)	 Plasticiser molecules get between polymer chains / push chains further apart Reduces the forces(of attraction) / strength of bonds between the polymer chains So less energy is needed to separate / slide the polymer chains 		1 1 1
4(e)	 Plasticisers diffuse / move nearer to the surface / escape from the polymer So there is less plasticiser (between the polymer chains) to modify the properties / so the chains move closer together 	Allow description of a property change e.g. there is less plasticiser so plastic becomes less flexible / brittle	1
Total			11

5(a)	Regular / ordered arrangement of particles		1
5(b)(i)	Can be drawn out into wires(or pipes) / shows (both elastic and) plastic deformation (or behaviour)		1
5(b)(ii)	 In iron the layers / atoms can slide past each other The different sized atoms / irregular structure (of steel) Prevents the layers / atoms sliding past each other (as easily) 	The 2nd marking point can be obtained from a diagram	1 1 1
5(c)(i)	Difficult to dent / scratch / wear away	Allow resistant to deformation	1
5(c)(ii)	 One of: lasts longer / won't wear away as easily / more durable does not blunt so easily keeps its cutting edge gives a cleaner cut gives a more accurate cut 	Ignore reference to 'hardness'	1
5(d)	 Procedure / Measurements Place tube above metal sample Drop punch down tube Measure height of drop with a ruler Measure diameter / depth of dent with Vernier callipers / travelling microscope Repeat with second sample Validity Same drop height / always drop from top of tube Same thickness of metal sheet Use same centre punch each time Same surface under sample 	Any 4 from procedure / measurements section Accept 'drop punch from top of tube' Any 2 from validity section	4
	 Repeatability Repeat with each sample and average results Results 	Both 'repeat' and 'average' needed for mark	1
	Sheet with smaller (average) dent is harder	Accept converse	1
Total			15

6(a)(i)	Aluminium		1
6(a)(ii)	(Steel has the) same coefficient of linear expansion (as concrete)		1
6(a)(iii)	Inc. in length = coefficient \times orig. length \times temp. rise. = 0.00002 \times 0.5 \times 70 = 0.0007 m / 0.7 mm	Correct numerical answer gains 2 marks. 1 compensation mark for correct formula / substitution. 1 mark for correct unit matching numerical answer.	2
6(b)(i)	 Brass (no mark). the higher the coefficient the greater the expansion / brass expands more than iron the outside of the curve is longer. 		1
6(b)(ii)	Diagram of a curved strip with brass labelled on the inside of the curve / iron labelled on the outside of the curve.	Accept an unlabelled diagram with the outside of the curve shaded and the inside of the curve unshaded	1
Total			8

7(a)	 One of: stiff / high YM so does not stretch (too far under stress) tough / not brittle so does not break / snap easily elastic so returns to original length (when unstressed) flexible to bend around pulley 	 1 mark for property + 1 mark for explanation. Explanation must be linked to the property. Do not allow 'stiffness' / 'YM' / 'toughness' unless qualified. NOT: 'strong / hard / ductile / malleable / durable' 	2
7(b)(i)	Strain is change in length divided by original length	Accept 'extension' for 'change in length' Accept answer written as a formula	1
7(b)(ii)	Stress is force divided by cross-sectional area	Accept answer written as a formula	1
7(b)(iii)	Young modulus is stress divided by strain	Accept answer written as a formula	1
7(c)	CSA = force \div stress = $(5.4 \times 10^4) \div (1.1 \times 10^8)$ = $4.9 \times 10^{-4} \text{ m}^2$	2 marks for correct answer. 1 compensation mark for correct formula / substitution. 1 mark for correct unit.	3
7(d)(i)	Strain = stress \div YM = (1.1 × 10 ⁸) \div (2.1 × 10 ¹¹) = 5.2 × 10 ⁻⁴	2 marks for correct answer. 1 compensation mark for correct formula / substitution.	2
7(d)(ii)	Extension = strain × orig. length = $(5.2 \times 10^{-4}) \times 650$ = 3.4×10^{-1} (m) = 0.34 (m)	2 marks for correct answer. 1 compensation mark for correct formula / substitution. Allow ecf from 7(d)(i)	2
7(e)	 One of: to avoid getting near to plastic or permanent deformation (in cable) to avoid getting near to permanently changing length (of cable) to stay well below elastic limit 	NOT:' so cable does not break / snap' NOT: 'for safety'	1
Total			13