General Certificate of Education June 2004 Advanced Subsidiary Examination

APPLYING MATHEMATICS Paper 1

UOM4/1

Monday 24 May 2004 Morning Session

In addition to this paper you will require:

- a clean copy of the Data Sheet (enclosed);
- an 8-page answer book;
- a ruler;
- · a graphics calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book.
- The Examining Body for this paper is AQA. The Paper Reference is UOM4/1.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of a calculator should normally be given to three significant figures.
- You may **not** refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is available for your use.
- At the end of the examination, remember to hand in your answer book.

Information

- The maximum mark for this paper is 30.
- Mark allocations are shown in brackets.
- You will be awarded up to 3 marks for your ability to present information accurately using correct notation and up to 3 marks for mathematical arguments presented clearly and logically.

Answer all questions.

Use The Analemma on the Data Sheet.

1	The a	The article states that, "The Earth makes a complete revolution in approximately 24 hours".		
	(a)	Show clearly why this implies that the Earth "rotates by approximately $\frac{1}{4}^{\circ}$ every minut	e". (2 marks)	
	(b)	State an assumption that has been made in arriving at this conclusion.	(1 mark)	
2	At noon on 30^{th} March, $N = 90$.			
	(a)	State clearly the time, correct to the nearest minute, that a sundial would be indicating at the graph in Figure 3 .	(2 marks)	
	(b)	Show calculations using the formula for the correction, E minutes, to confirm that y to part (a) is correct.	our answer (3 marks)	
3	Use t	the graph in Figure 3 to give the first date in a year when the Sun is due south at noon.	(3 marks)	
4	The graph of E plotted against N can be obtained by geometric transformation of the graph of the variation, V^{o} , plotted against N .			
	State	clearly this geometric transformation.	(2 marks)	
5	(a)	Find, in the simplest form possible, an expression for θ° at the North Pole.	(1 mark)	
	(b)	Sketch a graph of θ against N , for $0 \le N \le 400$, at the North Pole.	(3 marks)	
	(c)	Interpret this graph in terms of daylight at the North Pole over the course of a year.	(3 marks)	

6 The analemma for the noon Sun at Greenwich is repeated below with each point labelled.

- (a) Identify the point corresponding to:
 - (i) March 31st;

(ii) December 26th. (2 marks)

(b) On how many days in a year does sundial time correspond with Greenwich mean time? (2 marks)

END OF QUESTIONS

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE