Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A level

1091/01

CHEMISTRY - CH1

A.M. THURSDAY, 23 May 2013

1½ hours

FOR EXAMINER'S USE ONLY						
Section	Question	Mark				
A	1-6					
В	7					
	8					
	9					
	10					
	11					
TOTAL MARK						

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- copy of the **Periodic Table** supplied by WJEC. Refer to it for any **relative atomic masses** you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A** (10 marks) and **Section B** (70 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The QWC label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

SECTION A

	Answer all questions in the spaces provided.	
1.	Carbon-14 is a radioactive isotope of carbon. Give the numbers of protons, neutrons electrons present in an atom of carbon-14.	and [2]
	Number of protons	
	Number of neutrons	
	Number of electrons	
2.	Circle all of the following that carry a negative charge.	[2]
	electron α -particle γ -ray proton neutron β -particle	
3.	Many industrial processes use catalysts.	
	Explain how a catalyst increases the rate of a chemical reaction.	[2]
4.	Sketch the shape of one <i>p</i> -orbital.	[1]

Exa	mine
0	nlv

5.	Name an element that has a half-filled set of <i>p</i> -orbitals.	[1]	Ollry
6.	Vinegar is a dilute solution of a weak acid. (a) State what is meant by an acid.	[1]	
	(b) Suggest a pH value for vinegar.	[1]	
	Section	on A Total [10]	

1091 010003

SECTION B

Answer all questions in the spaces provided.

- 7. Jewels such as diamonds, rubies and emeralds are highly valued but are all closely related to much less precious materials.
 - (a) Emeralds are a form of the mineral beryl, with their green colour due to the impurities present.

A sample of beryl contains 10.04% aluminium, 53.58% oxygen and 31.35% silicon by mass, with beryllium making up the remainder. Its molecular formula is $Al_2Be_xSi_6O_{18}$. Find the percentage by mass of beryllium in the compound and hence calculate the value of x in this formula.

χ	=	 	 	 	 	 			 	 	 			 					 	

(b) The most common form of carbon is graphite, however the element also exists in the form of diamond.

We can calculate the standard enthalpy change of reaction for making diamond from graphite using Hess' Law.

Reaction	Standard enthalpy change of reaction/kJ mol ⁻¹
$C(diamond) + O_2(g) \longrightarrow CO_2(g)$	-395.4
$C(graphite) + O_2(g) \longrightarrow CO_2(g)$	-393.5

(1)	State Hess Law.	ĮΙ

Use Hess' Law and the data in the table on page 4 to calculate the enthalpy change

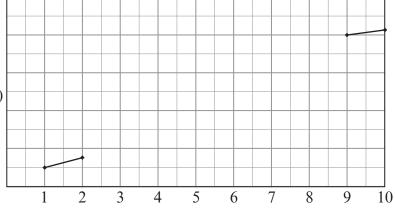
	C(graphite) → C(diamond)
	Enthalpy change of reaction = kJ mol ⁻¹
(iii)	Kyran states that because diamond is an element, its enthalpy of formation under standard conditions must be zero.
	State whether Kyran is correct and give a reason to support your answer. [1]
(iv)	Most diamonds used in jewellery come from natural sources, but it is possible to produce diamonds artificially although these are rarely of gemstone quality.
	I One proposed use of artificial diamond is to protect medical implants. To cover a particular implant, a volume of 2.08 cm ³ of diamond is needed. Calculate the mass of diamond required.
	[Density of diamond under standard conditions = $3.51 \mathrm{gcm^{-3}}$]

Mass of diamond =g

II The process of producing diamond from graphite has a yield of 93%. Calculate the mass of graphite needed to make the diamond required. [2]

Mass of graphite = _____ g

Total [10]


(ii)

of the reaction below.

© WJEC CBAC Ltd. (1091-01) Turn over.

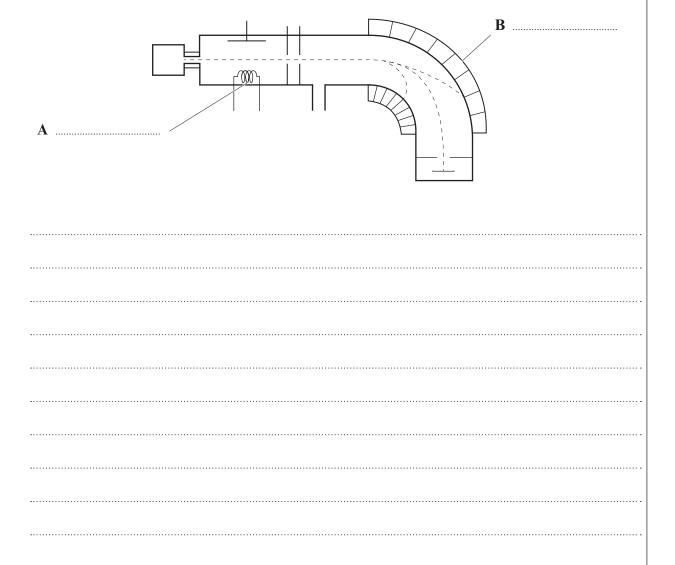
- 8. The noble gases (Group 0) are a group of very unreactive elements. The first members of the group (helium, neon and argon) do not form any compounds, however it is possible to form a few compounds of krypton and xenon.
 - (a) Neon has ten electrons in each atom. The sketch below shows the first two and the final two ionisation energies for a neon atom.
 - (i) Sketch the pattern you would expect to see for the remaining six ionisation energies of neon. [2]

log (ionisation energy)

Number of electrons removed

(11)	Explain any significant changes in slope on the graph you have sketched.	[2]
•••••		•••••

1091	010007


The first compound of a noble gas was formed from Xe atoms and PtF_6 . It was the ionic compound $Xe^+ PtF_6^-$.
Explain why it is not possible to form a similar ionic compound of argon, Ar ⁺ PtF ₆ ⁻ . [2]
Helium was identified in the Sun before it was discovered on Earth. When light from the Sun is split into its different colours by a prism, dark lines are observed against a coloured background which show the atomic absorption spectrum of helium. Explain how an atomic absorption spectrum forms.
Xenon trioxide, XeO ₃ , is a compound which decomposes explosively at 25 °C according to the following equation.
$2XeO_3(s) \longrightarrow 2Xe(g) + 3O_2(g)$
Calculate the volume of gas, in dm ³ , released by the decomposition of 1 mol of XeO ₃ under these conditions. [2]
[1 mol of any gas at 25 °C occupies a volume of 24.0 dm ³]
$Volume = \dots dm^3$
Total [10]

- 9. Selenium is a Group 6 element that is needed in the human body in trace amounts for the correct functioning of some enzymes. Only small amounts are required as large doses are harmful.
 - (a) A mass spectrometer can be used to find the relative atomic mass of a sample of selenium. The following diagram shows a typical mass spectrometer.
 - (i) Label parts A and B.

[1]

(ii) Describe what happens to a sample introduced into the mass spectrometer. [4]

(b) Some selenium is found amongst the decay products in a nuclear reactor. The mass spectrum found for this sample of selenium had the isotopic composition below.

Isotope	Abundance
⁷⁸ Se	12.2%
⁷⁹ Se	26.4%
⁸⁰ Se	61.4%

Calculate the relative atomic mass of this sample of selenium. Give your answer to **3 significant figures**.

[3]

Relative atomic mass =

- (c) 81 Se is a radioactive isotope of the element selenium, which decays by β -emission with a half life of 18.75 minutes.
 - (i) The decay of ⁸¹Se is shown by the equation below.

81
Se \longrightarrow $^{a}X + {}^{0}_{-1}\beta$

Identify a and X in this equation.

[1]

a X

(ii) 2.72 g of ⁸¹Se is used by a scientist for an experiment. Calculate the mass of ⁸¹Se that would remain after 75 minutes. [2]

Total [13]

10.	•	ated sodium carbonate, $Na_2CO_3.xH_2O$, is a crystalline solid that can be used to prepare indard solution for titration.
	(a)	The relative molecular mass of this hydrated sodium carbonate is 286.2. Calculate the value of x in this formula. [1]
	<i>(</i> ,)	$x = \dots$ Emily wants to manage 250 cm ³ of a solution of addition and analysis of concentration
	<i>(b)</i>	Emily wants to prepare 250 cm ³ of a solution of sodium carbonate of concentration 0.200 mol dm ⁻³ using this hydrated sodium carbonate.
		(i) Calculate the mass of hydrated sodium carbonate needed to prepare this solution. [2]
		Mass of hydrated sodium carbonate =g
		(ii) Emily proposes to make the solution by the following method.
		• Weigh the required mass of hydrated sodium carbonate.
		• Place the hydrated sodium carbonate in a beaker and add 250 cm ³ of distilled water.
		• Stir the mixture until all the sodium carbonate dissolves.
		• Transfer the solution to the volumetric flask and shake.
		Her teacher said that the method was not correct. Suggest two changes that Emily should make to her method. [2]
		1.
		2.

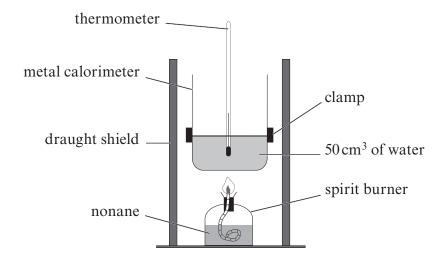
Describe how Emily should perform one titration to find the volume of sulfuric acid needed for complete reaction. [4] QWC [1] Total [10]	cid, H_2SO_4 , of	carbonate solution and titrated these using a solution of sulfuric unknown concentration. The acid was placed in the burette.
Total [10]	[4]	Describe how Emily should perform one titration to find the volume needed for complete reaction.
Total [10]		
	Total [10]	

- 11. The combustion of fossil fuels provides much of the energy we use today. Nonane, C_9H_{20} , is one of the compounds present in the fuel kerosene.
 - (a) (i) The equation for the combustion of nonane is given below.

$$C_9H_{20}(l) + 14O_2(g) \longrightarrow 9CO_2(g) + 10H_2O(l)$$

Use the values given in the table to calculate the standard enthalpy of combustion of nonane. [3]

Substance	Standard enthalpy of formation, ΔH_f^{\oplus} / kJ mol ⁻¹
C ₉ H ₂₀ (l)	-275
O ₂ (g)	0
CO ₂ (g)	-394
H ₂ O(l)	-286


				1
Standard	enthalpy of	combustion =	 kJ	mol ⁻¹

(ii)	Standard	enthalpy	changes	are	measured	under	standard	conditions	. Give	the
	standard	conditions	s of temp	erat	ure and pr	essure,	including	units for ea	ıch.	[2]

Temperature	
remperature	

Examiner only

(b) Iwan wished to confirm the value he had calculated for the enthalpy of combustion of nonane, and he used the apparatus below.

(i) Iwan measured the mass of the spirit burner at the start and end of the experiment and found that 0.20 g of nonane had been burned. Calculate the number of moles of nonane present in 0.20 g. [2]

Number of moles = mol

(ii) During this experiment, the temperature of the water increased by 42.0 °C. Use the formula below to calculate the enthalpy change of combustion of nonane, in kJ mol⁻¹. [2]

$$\Delta H = \frac{-mc\Delta T}{n}$$

m is the mass of water c is the specific heat capacity of water which is $4.18\,\mathrm{J}\,^{\circ}\mathrm{C}^{-1}\mathrm{g}^{-1}$ ΔT is the temperature change in $^{\circ}\mathrm{C}$ n is the number of moles of nonane

 $\Delta H = \dots kJ \text{ mol}^{-1}$

QUESTION 11 CONTINUES ON PAGE 14

mental value that Iwan obtained differs from the art (a). [1]	(iii)
T. (100)	
Total [10]	

12. (a)	The combustion of fossil fuels containing sulfur impurities is known to cause acid rain. This acid rain can cause the erosion of marble statues as the calcium carbonate in the reacts with the acid in the rain. Give one other problem caused by acid rain.	m
(b)	A chemist is developing coatings for marble that will slow down the rate of their erosio by acid rain. To compare different coatings he uses small model statues, all of which ar the same size and shape as each other. He proposes to measure the rate of reaction by adding acid and measuring the volume of gas given off at set time intervals. (i) Complete the diagram to show the apparatus that could be used to perform the experiment.	re y is
model s	tatue (ii) Explain why it is important that the model statues are the same size and shape a	115
	each other. [1] (iii) State two other factors he will need to keep constant if he is to collect valid data [2]	1]

<i>(c)</i>		gas that causes acid rain is sulfur dioxide. This gas is used to produce sulfur trioxide to Contact Process. The reaction occurring is shown in the following equation.
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
	(i)	State and explain the effect of increasing pressure on the equilibrium yield of sulfur trioxide. [2]
		When the temperature is increased the rate of which cavilibrium is reached in
	(ii)	When the temperature is increased the rate at which equilibrium is reached is increased and the yield of sulfur trioxide is decreased.
		I State whether this reaction is endothermic, exothermic or neither, giving a reason for your answer. [2]

	Explain why increasing the temperature leads to an increase in the rate of reaction. [3]
••••••	
•····	
•••••	
• · · · · · · · · · · · · · · · · · · ·	
•••••	
 III	To increase the rate of a reaction, a catalyst can be used. Give a differen
III	To increase the rate of a reaction, a catalyst can be used. Give a different catalysed reaction and name the catalyst for this reaction.
III	To increase the rate of a reaction, a catalyst can be used. Give a different catalysed reaction and name the catalyst for this reaction.
	To increase the rate of a reaction, a catalyst can be used. Give a different catalysed reaction and name the catalyst for this reaction. [1]

Section B Total [70]

(d) Ethanoic acid, CH₃COOH, is one of the most familiar compounds used as a flavouring and preservative for food. Originally ethanoic acid was produced by oxidation of ethanol by bacteria in the presence of air (route A below). Today there are many other possible routes and three of these are shown as routes **B**, **C** and **D** below.

Route	Carbon- containing starting materials	Conditions	Overall equation	Atom
A	ethanol		$C_2H_5OH + O_2 \rightarrow CH_3COOH + H_2O$	76.9%
В	methanol, carbon monoxide	150°C, 30 atm	CH ₃ OH + CO ⇌ CH ₃ COOH	100.0%
C	butane	150°C, 55 atm	$2C_4H_{10} + 5O_2 \longrightarrow 4CH_3COOH + 2H_2O$	87.0%
D	sugars		$C_6H_{12}O_6 \rightarrow 3CH_3COOH$	

(i)	State the atom economy of route D for production of ethanoic acid.	[1]
(ii)	Route B is the route most commonly used for producing ethanoic action both financial and <i>Green Chemistry</i> reasons. Apply the print <i>Green Chemistry</i> to the information above to give two reasons why refavoured over route C .	ciples of
	1.	
	2	
(iii)	Route B uses a homogeneous catalyst. State what effect the catalyst wil the position of this equilibrium.	l have on [1]
		T . 1.171
		Total [17]

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Examin only
		······
		······
		.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Examine only
I		l

GCE AS/A level

CHEMISTRY - PERIODIC TABLE FOR USE WITH CH1

A.M. THURSDAY, 23 May 2013

BLE	3 4 5 6 7 0	4.00 He	p Block	10.8 12.0 14.0 16.0 19.0 20.2 Boron Carbon Nitrogen Oxygen Fluorine Neon 5 6 7 8 9 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63.5 65.4 69.7 72.6 74.9 79.0 79.0 79.9 83.8 Cu Zn Ga Ge As Se Br Kr Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton 30 31 32 33 34 35 36	108 112 115 119 122 128 127 131 Ag Cd In Sn Sh Te I Xe Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon 47 48 49 50 51 52 53 54	Au Hg Tl Pb Bi Po At Rn Gold Mercury Hallium Lead Bismuth Polonium Astatine Radon 79 80 81 82 83 84 85 86	ck	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(251) (254) (253) (256) Cf Es Fm Md	
	9	, Block										
			d									
	8							204 T1 Thallium			-	
LE			·				112 Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66		
TAB							Ö			f Block	Ĕ .	
ODIC						9 58.7 O Ni alt Nickel	3 106 h Pd ium Palladium 46	2 195 c Pt um Platinum 78	[J	(1) 157 157 150 150 150 150 150 150 150 150 150 150	(247) (247) Cm	
HE PERIODIC TABLE			relative	atomic mass - atomic number		55.8 58.9 Fe Co Column Cobalt 26 27	Ru Rh Ruthenium Rhodium 44 45	190 192 Os Ir Osmium Iridium 76 77		150 (153) Sm Eu Samarium Europium 62 63	(242) (243) Pu Am	
THE	Group	Key	§ ×	N. N. N. N. N. N. N. N.	$\begin{bmatrix} A_{\rm r} \\ Name \end{bmatrix}$	d Block	Mn Manganese I	Tchnetium Rut	186 Re (Rhenium Os: 75		Pm S Sam Promethium Sam 61	$\begin{pmatrix} (237) & (237) \\ Np & \mathbf{F} \\ \mathbf{N} \end{pmatrix}$
				01	_	52.0 Cr Chromium 24	95.9 Mo Molybdenum 42	184 W W Tungsten 174		Neodymium P	238 U	
						50.9 Vanadium 23	92.9 Nb Niobium 41	Ta Tantalum		141 Pr Prascodymium 59	Pa Protectivity	
						45.0 47.9 Sc Ti Scandium Titanium 21 22	91.2 Zr Zr a Zirconium 40	Hf Hafnium 72		140 Ce Cerium 58	232 Th	
		A	A		H H		$ \begin{vmatrix} 88.9 \\ Y \\ Y \\ 39 \end{vmatrix} $	$\begin{bmatrix} 139 \\ La \end{bmatrix}$	Actinium 89	► Lanthanoid elements	►► Actinoid elements	
	7	s Block	и	Beryllium	Mg Magnesium 12	Ca Calcium	Sr.6 Strontium 38	137 Ba Barium 56	(226) Ra n Radium 88	► Laı ele	► Ac	
		S 1:01 H	Hydrogen 1	6.94 Li Lithium	23.0 Na Sodium	39.1 K Potassium 19	85.5 Rb Rubidium	133 Cs Caesium 55	(223) Fr Francium 87			
		Period	-	© WJEC CBA	C Ltd.	(1091-01A)	5	9	7			