1(a)	The (tot	tal of the) quantity being cons	served is constant	t		2	
i(a)	•	iswer only 1				1	[2]
1 (b)(i)		conservation of energy	•			•	[j
1 (13)(1)	c.y.	conservation of momentur	1				
		conservation of charge	•				
		conservation of mass	1 each maxim	um of 3		3	[3]
4/L\/!!\		1 for idea and 1 for explana		idili oi o	3 x 2	6	[6]
1(b)(ii)		•	Idon		3 X Z	U	[O]
e.g	•	1. a falling object					
		finding the speed of OR	a aum of both oo	natant			
		p.e. changes to k.e. with th2. a collision	e sum of both cor	Istant			
			on OB				
		finding speed after a collision			_		
		(total) momentum before co	ollision = moment	um atter collisio	r)		
		3. branched circuits					
		finding currents in OR					
		charge (current) into a junc	tion = charge (cui	rrent) out of a ju	nction		
		4. in a chemical reaction					
		mass of reactants = mass of	-				
	•	irst example above the sum	•	e. may not be co	nstant		
		f conservation of energy app					
		use not all the energy is bein	g considered bec	ause			
wor	•	e done against air resistance.					
	1 fc	or suitable example, 1 for dire	ect explanation, 1	•	ail	3	[3]
1(c)(i)	stateme	ent of chosen laws		2 x 1		2	
1(c)(ii)	explana	tion of the application of the	aw	2 x 1		2	
1(c)(iii)	stateme	ent of what is being conserve	d	2 x 1		2	
	how cor	nservation takes place				2	[8]
	ignore a	ny confusion between wheth	er a law is descri	bed as Kirchhof	f's		
	first or s	econd law				Tota	al: 22

2(a)	unit for moment of	inertia is kg m²		1	
	candidate correctly	gignores the ½		1	[2]
2(b)	maximum kinetic e	nergy = $2\pi^2 f^2 I = 2\pi^2 \times 20$	$00^2 \times 7.8$	1	
	$= 6.16 \times 10^{-1}$	10 ⁶ J with at least two si	gnificant figures	1	[2]
2(c)	sensible values i.e	. both smaller than value	es for bus	1	
	e.g. volume	$= \pi \times (0.10)^2 \times 0.2$	$= 6.3 \times 10^{-3} \text{ m}^3$	1	
	mass	$= 6.3 \times 10^{-3} \times 7800$	= 49 kg	1	
	$I = \frac{1}{2}mr^2$	$= 0.5 \times 49 \times 0.1^{2}$	= 0.24(5) (kg m2)	1	
	k.e. = $2\pi^2 f^2 I$	$=2\pi^2 \times 200^2 \times 0.245$	$= 1.9(3) \times 10^5 J$	1	[5]
2(d)	k.e. = $2\pi^2 f^2 I$	= 0.5	$= 2\pi^2 \times f^2 \times 5.0 \times 10^6$	1	
	f²	$= 0.5 / 2\pi^2 \times 5.0 \times 10^6$	3	1	
		f =	71 (revolutions per second)	1	[3]

	bus flywheel	car flywheel	toy car flywheel
length I / m	0.40	e.g. 0.20	0.008
radius r / m	0.20	e.g. 0.10	0.015
volume V / m³	0.050	e.g. 6.3 x 10 ⁻³	5.7 x 10 ⁻⁶
mass m / kg	390	e.g. 49	0.044
maximum frequency of rotation f / s ⁻¹	200	200	71
moment of inertia I	7.8	e.g. 0.24(5)	5.0 x 10 ⁻⁶
maximum kinetic energy stored /J	6.16 x 10 ⁶	e.g. 1.9(3) x 10⁵	0.50

Total: 10

Total: 10

potential gradient (from V/d) measured in V m ⁻¹ 1 V m ⁻¹ = J C ⁻¹ m ⁻¹ = N C ⁻¹ 1 [3] 4(b)(i) field = 12 V / 3.4 m = 3.5 V m ⁻¹ 1 4(b)(ii) 1. force = Ee 1 = 3.5 x 1.6 x 10 ⁻¹⁹ = 5.6 x 10 ⁻¹⁹ (N)
4(b)(i) field = 12 V / 3.4 m = 3.5 V m ⁻¹ 1 4(b)(ii) 1. force = Ee 1
4(b)(ii) 1. force = <i>Ee</i> 1
= $3.5 \times 1.6 \times 10^{-19} = 5.6 \times 10^{-19}$ (N)
2. acceleration = force/mass 1
$= 5.6 \times 10^{-19} / 9.11 \times 10^{-31} = 6.2 \times 10^{11} \text{ (m s}^{-2}) \qquad 1 \qquad [5]$
4(c) the acceleration is correct
electrons only travel a very short distance before colliding with atoms
so they do not acquire any large speed
start stop start stop movement restricts speed 2 [2]
full marks can be given for 'collision' + one other point