Abbreviations, annotations and conventions used in the Mark Scheme	/ ; NOT () ecf AW ora	= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument
---	---	--

(b)(i)	object starts with gravitational p.e.	1		
	converted into k.e. (as it falls)	1		
	maximum k.e. as it hits ground	1		
	on stopping converted into elastic p.e. (for an instant)	1		
	becomes internal energy / heat of fragments (and floor)	1		
	and sound	1	4	
	6 marking points; only 4 required			
(ii)	momentum of falling object (increases as it falls)	1		
	total momentum starts at zero	1		
	momentum finishes at zero	1		
	Earth gains momentum up as body falls	1		
	Earth's velocity is very small (due to its large mass)	1	4	8
	5 marking points; only 4 required			
(c)	ball is elastic but cup is brittle	1		
	distortion of cup is small	1		
	so acceleration of cup is very large	1		
	requiring a large force	1		
	distance of distortion for ball is much greater	1	4	4
	OR in terms of $F\delta t$ or $F\delta x$			
	5 marking points; only 4 required			

2(a)	a transformer	1	1	
(b)	the turns ratio	1		
	9/230 OR 0.039 OR 1:25 OR 1:26	1	2	
	If a factor of 1.41 appears, 1:36 allow full credit			
(c)	marking points allowed - 3 required for full marks	3	3	
	diode in connection from secondary to battery			
	diode connected the correct way round			
	light bulb connected in possible circuit			
	light bulb connected across transformer secondary – (it will then go out when			
	the transformer is not in use)			
(d)	secondary coil is removed from (alternating) field of primary	1		
	so no induced e.m.f. (diode prevents bulb lighting from the battery)	1	2	8

Mark Scheme

January 2002

2826/01

3(a)	Q charge on capacitor (at time t)	Q ₀ initial charge (on capacitor)	1		
	C capacitance	R resistance	1		
	N number of undecayed atoms	N_0 initial number of undecayed atoms	1		
	(at time t)				
	λ decay constant	t time	1	4	
(b)(i)	unit of C = coulomb per volt = ampere s	second per volt OR as A s V ⁻¹	1		
	unit of R = volt per ampere OR as V A	-1	1		
	deduction required		1		
	e.g. unit of $CR = A s V^1 \times V A^{-1} = s$ therefore since t has the unit s				
	t/CR has no unit				
(ii)	s ⁻¹		1	4	
(c) (i)	$\frac{Q}{Q_0} = e^{-\frac{5CR}{CR}}$		1		
	Q_0 = $e^{-5} = 0.0067$ (4)		1		
(ii)	$\frac{\frac{1}{2}Q}{Q_0}_0 = e^{-\frac{t}{100 \times 10^{-6} \times 200 \times 10^3}}$		1		
	$\frac{1}{2} = e^{-\frac{t}{20}}$		1		
	$\ln 0.5 = -\frac{t}{20} = -0.693$				
	t = 13.86 = 13.9s		1	5	
(d) (i)	time constant = $1/\lambda$		1		
(ii)	$\lambda t_{\frac{1}{2}} = 0.693$		1		
	time constant = $1/\lambda$ = 850/0.693 = 1230) s	1		

(iii) same as for capacitors, namely 0.0067(4)

Maximum 3 awarded for 3 of these 5 points

Mark Scheme

2826/01