Mark Scheme 2825/03 January 2006

MATERIALS

2825/03 Mark Scheme Jan 2006

2825/03		Mark Scheme	Jan 2006	
1.	(a)	(i) 6 (ii) 12	(1) (1) [2]	
	(b)	(i) 1 mole contains 6.0×10^{23} atoms / mass of 6.0×10^{23} gold atoms is 0.197 mass of a gold atom = 0.197 / 6.0×10^{23} (= 3.3×10^{-25} kg) [Allow 1.93×10^4 / 5.9×10^{28} (= 3.3×10^{-25} kg)]	7 kg (1) (1) [2]	
	,	(ii) Number of moles of gold in 1 m ³ = 1.93 x 10 ⁴ / 0.197 = 9.80×10^4 Number of gold atoms in 1 m ³ = $9.80 \times 10^4 \times 6.0 \times 10^{23}$ (= 5.9×10^{28}) OR	(1)	
		Number of gold atoms in 1 m ³ = density / mass of gold atom = $1.93 \times 10^4 / 3.3 \times 10^{-25}$ (= 5.9×10^{28})	(1) [1]	
	(c)	(i) Volume of 5.9×10^{28} gold atoms = 0.74 m^3 Volume of a gold atom = $0.74 / 5.9 \times 10^{28} = 1.25 \times 10^{-29} \text{ m}^3$	(1) (1) [2]	
		(ii) Volume of sphere, $V = 4\pi/3 \times (radius)^3$ radius = $[(3 \times 1.25 \times 10^{-29}) / 4\pi]^{1/3} = 1.44 \times 10^{-10} \text{ m}$ (Allow e.c.f.)	(1) (1) [2]	
			[Total: 9]	
2.	(a)	Grains in which atoms are arranged in a repeating pattern; Separated by grain boundaries; from other grains with patterns in different orientations.	(1) (1) (1) [3]	
	(b)	(i) Atoms are farther apart in graphite (than in diamond).	[1]	
		(ii) (Compared with diamond) atoms in graphite are farther apart so bonds between them are weaker. / Less thermal energy is required to break be between atoms in graphite (than in diamond).	onds [1]	
		(iii) Graphite consists of parallel layers of carbon atoms; which easily slide over each other / readily undergo plastic deformation	(1) i. (1) [2]	
		(iv) Very strong bonds between diamond atoms; make diamond harder than other materials (and so able to scratch ther	(1) n). (1) [2]	
			[Total: 9]	
3.	(a)	Area of cross-section = $\pi \times (5.9 \times 10^{-5})^2 = 1.09 \times 10^{-8} \text{ (m}^2\text{)}$ Conductivity = 1/resistivity = L/RA = 0.61/[71 x $\pi \times (5.9 \times 10^{-5})^2$] = 7.86 x 10 ⁵ $\Omega^{-1}\text{m}^{-1}$	(1) (1) (1) (1)	
		Allow 1 mark for resistivity = $1.27 \times 10^{-6} (\Omega m)$	[4]	

9]

(p)	v = l/nAe; n: number of free electrons per m³ / charge carriers per m³;	(1)
	1: current A: cross-section of filament (e: electron charge).	(1) [2]
(c)	(i) Fuse-wire has a smaller cross-section than the copper wire; Fuse wire has lower n / free electron / charge carrier concentration than copper / has fewer electrons in the conduction band.	(1)(1) [2]
	(ii) In a metal, conducting electrons collide with metal atoms; increasing their (vibrational) kinetic energy of atoms causing higher temperature; Energy transfer to atoms is greater in the fuse (than in the copper wire); because greater speed / k.e.of conducting electrons in the fuse; outweighs the effect of a larger number of conducting electrons in copper.	(1) (1) (1) (1) (1) max [Total: 12]
4. (a)	Graph of correct shape <u>passing through origin;</u>	(1)
(4)	showing zero gradient at maximum B.	(1) [2]
(b)	Mention of domains; Mention of dipoles; When B is zero / I is zero / at origin, domains are randomly orientated; Reference to domains orientated in the (general) direction of the magnetising field; Walls of these domains move / these domains grow (others shrink); Dipoles (within domains) rotate to be in line with magnetising field; This occurs where gradient of graph is less steep / This process takes place less	(1) (1) (1) (1) (1) (1)
	readily / requires more energy; Where graph is horizontal / gradient zero; B has reached maximum (saturation) value when all dipoles are aligned;	(1) (1) (1) max [Total: 9]
5. (a)	Labelled diagram showing: valence band below energy gap; energy gap labelled 1.1 eV. conduction band above energy gap.	(1) (1) (1) [3]
(b)	In the dark few electrons in the conduction band; In daylight light photons provide energy; to promote (many) more electrons from valence band to conduction band; High / low resistance related to few / many conduction band electrons.	(1) (1) (1) (1) [4]
(c)	(i) Circuit with battery connected to LDR; Ammeter and voltmeter correctly connected.	(1) (1) [2]
	(ii) Control and measurement of light intensity: Arrangement to shield LDR from light from unwanted sources / Carry out experiment in darkened room; Use constant light source placed at variable distance from LDR / Use light source of variable power at fixed distance from LDR; with light meter to record light intensity at position of LDR.	(1) (1) (1) [3]

2825/03 Mark Scheme Jan 2006

		Ranges of meters: Voltmeter with range applicable to battery voltage / say 0 - 10 V scale; For maximum light conditions use milliammeter; and for minimum light conditions use microammeter. OR	(1) (1) (1)
		Reference to multimeter to read current (1) with appropriate change of scale.	[3]
		Readings and calculations: For each position of light source / power value of light source, measure (and record) readings from light meter; Read (and record) readings from voltmeter and ammeter and calculate resistance using R = V/I.	(1) (1) [2] [Total: 17]
6.	(a)	(i) Speed $v = c/n$ = 3.0 x 10 ⁸ / 1.47 = 2.04(1) x 10 ⁸ m s ⁻¹	(1) (1) [2]
		(ii) Time for the mean wavelength = s/v = $1000 / 2.04 \times 10^8 = 4.9(00) \times 10^{-6} s$ (e.c.f.)	(1) (1) [2]
	(b)	Speed of the maximum wavelength $\approx 2.041 \times 10^8 \times 1.001$ (e.c.f.) $\approx 2.042(9) \times 10^8 \text{ m s}^{-1}$	(1)
		Time for the maximum wavelength = $1000 / 2.043 \times 10^6 = 4.8951 \times 10^6 \text{ s. (e.c.f.)}$ Time difference = $4.9 \times 10^6 - 4.8951 \times 10^{-6} = 5.0 \times 10^{-9} \text{ s.}$	(1) (1) [3]
	(c)	 (i) [Do not accept multipath dispersion without explanation] A pulse of radiation spreads out as it travels through the fibre; Causing a signal to be distorted; Imposing a limit to the number of pulses able to be transmitted per second. 	(1) (1) (1) max
		(ii) Use infra-red from a laser; The band of wavelength / frequency from a laser is narrower, so less variation in speed / smaller time difference.	(1) (1) [2]
	(d)	Between 1.35 μ m and 1.45 μ m photons are absorbed by (hydoxyl ion) impurities in the glass; At λ = 1.5 μ m the amount of Rayleigh scattering is low, and absorption by other	(1)
		processes is minimal; Above 1.5 µm photons are (increasingly) absorbed by vibrating bonds in the glass structure.	(1)
			(1) [3]
			[Total: 14]

2825/03 Mark Scheme Jan 2006

Question	Expected Answers	Ма	rks
7 (a)	either (If in parallel) when one bulb fails, other bulbs stay on or (If in parallel) can identify which bulb has failed;	1	[1]
(b)(i)	P = VI	1	
	0.5 = 240 I $I = 2.1 \times 10^{-3} A$ 1 s.f. in answer (-1) once only	1	[2]
(ii)	$R = V/I = 240/(2.1 \times 10^{-3})$	1	
(iii)	= $1.14 \times 10^{5} \Omega$ or $1.15 \times 10^{5} \Omega$ ans accept (1.1 to 1.2) x $10^{5} \Omega$	l	[2]
	$A = \rho l/R$	1	
(iv)	= $1.1 \times 10^{-6} \times 6.0 \times 10^{-3} / (1.14 \times 10^{5})$ (= $5.79 \times 10^{-14} \text{ m}^{2}$) $A = \pi r^{2}$ $5.79 \times 10^{-14} = \pi r^{2}$ so $r = 1.4 \times 10^{-7} \text{ m}$	1	[3]
	filament too thin / fragile to be manufactured / used without damage; allow ecf from (iii).	1	[1]
(c)	P: 0 V Q: 0 V; R: 240 V S: 240 V	1	
	current is zero p.d. across (any intact) bulb becomes zero so all 240 V across Y (1) any 2	2	[4]

2825/03	Mark Scheme	Jan 2006	-
d(i)	either set B bulb(s) have less resistance (than set A bulbs) or adding (each) set B bulb lowers circuit resistance;	1	
	either so current increases (when set B bulb inserted) or p.d. across (each) bulb increases or any valid argument using V^2/R ;	1	
	so power dissipation (in any bulb) increases;	1	[3]
(ii)	set A bulbs fail first;	i	
	Then		
	either Failure current for set A bulb $I_f = \sqrt{P/R} = \sqrt{0.75/200} = 0$.0612 A;	
	When failure occurs <u>total</u> resistance of set = $240/0.0612$ (= 3920); 1	
	Let X be number of 50Ω bulbs substituted	_	
	3920 = 50X + 200(24 - X); so $X = 5.87$ bulbs, so 5 or 6 bulbs;	ı	
	or Total initial resistance = $24 \times 200 = 4800 \Omega$		
	After substituting X set B bulbs, resistance = $4800 - 150 \text{ X}$	(1)	
	Current = $240/(4800 - 150 X)$	(1)	
	So power in a set A bulb, $P = I^2 P = 1240/(4800 - 150 \times 10^2) = 200 = 0.75$ for failure	(1)	
	$P = I^2 R = [240/(4800 - 150 X)]^2 \times 200 = 0.75$ for failure This gives X = 5.87 i.e. 5 or 6 bulbs	: (1)	[4]