Mark Scheme				Unit Code 2824		Session June		Year 2005		inal rsion	
Page 1 of 3											
Abbreviations, annotations and conventions used in the Mark Scheme				/ ; () ecf AW	 alternative and acceptable answers for the same marking point separates marking points words which are not essential to gain credit error carried forward alternative wording 						nt
Question Exped			Exped	eted Answers						Marks	
1	а	i ::	48 (N) 0.25 (s)					1	•		
	b	ii i ii	estimating area under graph or mean F; 6.5 ± 1 a = F/m or = 48/0.5; = 96 (m s ⁻²) ecf a(i) Ft = mv; v = $a(ii)/0.5 = 2a(ii)$ (m s ⁻¹) ecf a(ii)						2 2 2 2	3	
	С	iii			= ½ x 0.5 x : = 0.5 (8 ± 14	<i>b(ii)</i> ² ; = <i>a(ii)</i> ² (J 4) ;) ecf	b(ii)		2 1	6
			F = 11	/0.18; = 6	61(.1) (N)	aliter mean a =	: 12(2) m	s ⁻² F = ma	Total	2	3 12
2	а		force (on) on unit m	nass (at that poi	int in spa	ce/at the surfa	ce of a	1	1
	b	i ii iii	(mgh =	=) 1500 x · as) g dec	reases with			a-1		2 1 2	•
			½ mv² aliter: I	$2\pi R/T$; = $2\pi \times 2.0 \times 10^7/(4.5 \times 10^3)$ = 2.8×10^4 m s ⁻¹ v^2 ; = $0.5 \times 1500 \times (2.8 \times 10^4)^2$ = 5.9×10^{11} (J) r. F = mv ² /R; = mg; so ½ mv ² = ½ mgR; = 6.0×10^{11} (J)					2	7	
	С	i ii	4.5 (Ng = (-)6)	GM/r ²						1 1	
		iii	g ∝ 1/r	·² ;so value	e is 40/9 = 4	.4(4) (N kg ⁻¹)	ecf (c(i)	Total	2	4 12
3	а		zero, tl	he tempera	ature must t	(internal) energend to zero; the elvin scale/AW	•	_		1	2
	b c		applyir	ng pV/T = d	constant; V/	$290 = 0.01 \times 10^{4}$ $\times 10^{4}/(8.31 \times 20^{4})$				3 2	3
		ii	4.0 x 1	0 ⁻³ x 5.2 x	$10^5 = 2.1 x$	10 ³ (kg)	-	ecf c(i)	.4	1	3
	d e	i	two ve	rtical arrov	vs with line o	= 1.9 x 230/290 of action passin	g througi	n the centre of		2	2
		of the balloon (the upward one longer than the downward one); labelle 1.3×10^5 N/upward force/upthrust/lift and Mg/weight ii Ma = U - Mg; $27 \text{ M} = 1.3 \times 10^5 - \text{Mg}$			elled	1 1 2	2				
			giving	M = 3.5 x	10 ³ kg <i>give</i>	a 1 mark out of 3	3 for M =	4.8 x 10 ³ kg	Total	ī	3 15

Mark Scheme			Unit Code Session Year 2824 June 2005			Final Version		
Page	⊋ 2 of 3	3						
Question			Expected Answers					
4	a the splitting of a nucleus into two (or m nuclei/particles/fragments (spontaneou			•	•			
	b		$^{235}_{92}\text{U} + ^{1}_{0}\text{n} \rightarrow ^{141}_{56}\text{Ba}$		-1 mark pe	•	2	
	C		$\Delta E = c^2 \Delta m$; $\Delta m = 0.18$				2 1	
	d		$\Delta E = 9 \times 10^{16} \times 0.186$ $F = kQ_1Q_2/r^2$; $Q_1 = 566$		(10 ·· (J)		2	
			$F = 9 \times 10^9 \times 56 \times 36 \times$	$(1.6 \times 10^{-19})^2/(1.3 \times 1)^2$	$0^{-14})^2$; = 2.7(4) x 10^3		2	
						Total	10	
5	a		B = F/II with symbols e			-	1	
	b	ı	explicit reference to I a arrow towards centre of		define from F = BQv e	tc	1 2	
	D	ii	field out of paper; Flem		g protons act as conve	entional	1	
			current				1	
		iii iv	$F = Bev \ allow BQv$ $F = mv^2/r$; $Bev = mv^2/r$	'r ·			1 2	
			$B = mv/er = 1.67 \times 10^{-1}$		10 ⁻¹⁹ x 60) ; = 0.0026 ;	; T	3	
		v	the field must be doubl	led : D v (ee m e e		v Wb m ⁻²	4	
		•	force is required to ma	•	•	zaseu	1 1 11	
			·			Total	13	
6	а	i	cosine curve;				1	
				sensible (exponential)	decay of amplitude w	<i>i</i> ith time;	1	
		ii	correct period amplitude will decay m	ore rapidly: greater d	amning/air resistance	on	1	
		••	wings or greater damp					
			effectively cease in sho	orter time; greater en	ergy/amplitude loss pe	er cycle	2	
			or AW frequency will decrease	e/period increase: gre	eater mass/inertia of s	vstem	2 7	
	b	•	resonance occurs at /c			•	1	
			object/system	(at this fraguency)	,		4	
			caused by driving force when maximum energy		iver and driven/maxim	ıum	1	
			amplitude achieved	,	max 2 i		1 .	
		•	small amplitude (≈ that		uencies/less than 1.0	Hz;	1	
			driver and driven in phase amplitude rises to max				2	
			driver and driven 90° o				-	
			(very) small amplitud				1	
			driver and driven (186 for accurate reference				2 5	
			marks	- 15 piidoo oiiiito do	III Italios, Du	,a. U	v	
						Total	12	

Mark Scheme	Unit Code 2824	Session June	Year 2005	Final Version		
Page 3 of 3						
Question	Expected Answers			Marks		
7 a	α helium nucleus β electron γ photon/e-m radiation/energy α charge +(2e) mass $4m_p/4u$ β charge –(e) mass m_e γ charge 0 mass 0 α emission energy 3 – 7 MeV β emission energy 1 – 2 MeV γ emission energy about 1 – 2 MeV or all of the same order of magnitude/AW α monoenergetic from given nuclide β range of emission energies from					
	given nuclide from zero nuclide or comparison i α range 3 – 7 cm of air law in air/ order of kms	n terms of velocities β range 1 – 2 m of	air γ range inverse	1 square 1		
	α absorbed by paper β Pb sheet α strongly ionising β wany other sensible comp	veakly ionising γ ha	rdly ionising at all	to cm of 1 1 6 marks 1 6		
b	range/penetration/absor further progress made to suitable arrangement ar	o answer question of	therwise:			
•	diagram range/penetration/absor α place detector very control paper screen or mover interpret result; control	rption experiment: lose/ 2cm from source e back to 10 cm or m	e; measure count ra nore, measure count	te, use rate,		
	from same source β place detector e.g. 10 sheets of Al until count of			e;		
	interpret result γ place detector e.g. 10 sheets of Pb until count result		ckground level; inter			
•	aliter deflection experim needs vacuum for α exp source for radiation pass deflection or not of partic	periment; ses through region o	•	1 1		
	emissions; detail of directions; all 3 unless vacuum mention	correct – 2 marks ca	an only score max o	2		
	amount of curvature det particle Quality of written commo	•	•	of 1 6 marks 1 6 4 Total 16		
				10101		