| Mark Scheme | | | | Unit Code
2824 | | Session
June | | Year
2005 | | inal
rsion | | |---|--------|---|--|--|---|--|------------|--------------------------|------------------|---------------|---------| | Page 1 of 3 | | | | | | | | | | | | | Abbreviations,
annotations and
conventions used
in the Mark Scheme | | | | /
;
()
ecf
AW | alternative and acceptable answers for the same marking point separates marking points words which are not essential to gain credit error carried forward alternative wording | | | | | | nt | | Question Exped | | | Exped | eted Answers | | | | | | Marks | | | 1 | а | i
:: | 48 (N) 0.25 (s) | | | | | 1 | • | | | | | b | ii
i
ii | estimating area under graph or mean F; 6.5 ± 1 a = F/m or = 48/0.5; = 96 (m s ⁻²) ecf a(i)
Ft = mv; v = $a(ii)/0.5 = 2a(ii)$ (m s ⁻¹) ecf a(ii) | | | | | | 2
2
2
2 | 3 | | | | С | iii | | | = ½ x 0.5 x :
= 0.5 (8 ± 14 | <i>b(ii)</i> ² ; = <i>a(ii)</i> ² (J
4) ; |) ecf | b(ii) | | 2
1 | 6 | | | | | F = 11 | /0.18; = 6 | 61(.1) (N) | aliter mean a = | : 12(2) m | s ⁻² F = ma | Total | 2 | 3
12 | | 2 | а | | force (| | on) on unit m | nass (at that poi | int in spa | ce/at the surfa | ce of a | 1 | 1 | | | b | i
ii
iii | (mgh = | =) 1500 x ·
as) g dec | reases with | | | a-1 | | 2
1
2 | • | | | | | ½ mv²
aliter: I | $2\pi R/T$; = $2\pi \times 2.0 \times 10^7/(4.5 \times 10^3)$ = 2.8×10^4 m s ⁻¹ v^2 ; = $0.5 \times 1500 \times (2.8 \times 10^4)^2$ = 5.9×10^{11} (J) r. F = mv ² /R; = mg; so ½ mv ² = ½ mgR; = 6.0×10^{11} (J) | | | | | 2 | 7 | | | | С | i
ii | 4.5 (Ng = (-)6) | GM/r ² | | | | | | 1
1 | | | | | iii | g ∝ 1/r | ·² ;so value | e is 40/9 = 4 | .4(4) (N kg ⁻¹) | ecf (| c(i) | Total | 2 | 4
12 | | 3 | а | | zero, tl | he tempera | ature must t | (internal) energend to zero; the elvin scale/AW | • | _ | | 1 | 2 | | | b
c | | applyir | ng pV/T = d | constant; V/ | $290 = 0.01 \times 10^{4}$
$\times 10^{4}/(8.31 \times 20^{4})$ | | | | 3 2 | 3 | | | | ii | 4.0 x 1 | 0 ⁻³ x 5.2 x | $10^5 = 2.1 x$ | 10 ³ (kg) | - | ecf c(i) | .4 | 1 | 3 | | | d
e | i | two ve | rtical arrov | vs with line o | = 1.9 x 230/290
of action passin | g througi | n the centre of | | 2 | 2 | | | | of the balloon (the upward one longer than the downward one); labelle 1.3×10^5 N/upward force/upthrust/lift and Mg/weight ii Ma = U - Mg; $27 \text{ M} = 1.3 \times 10^5 - \text{Mg}$ | | | elled | 1
1
2 | 2 | | | | | | | | | giving | M = 3.5 x | 10 ³ kg <i>give</i> | a 1 mark out of 3 | 3 for M = | 4.8 x 10 ³ kg | Total | ī | 3
15 | | Mark Scheme | | | Unit Code Session Year
2824 June 2005 | | | Final
Version | | | |-------------|---|-----------|---|--|--------------------------------------|----------------------|-----------|--| | Page | ⊋ 2 of 3 | 3 | | | | | | | | Question | | | Expected Answers | | | | | | | 4 | a the splitting of a nucleus into two (or m
nuclei/particles/fragments (spontaneou | | | • | • | | | | | | b | | $^{235}_{92}\text{U} + ^{1}_{0}\text{n} \rightarrow ^{141}_{56}\text{Ba}$ | | -1 mark pe | • | 2 | | | | C | | $\Delta E = c^2 \Delta m$; $\Delta m = 0.18$ | | | | 2
1 | | | | d | | $\Delta E = 9 \times 10^{16} \times 0.186$
$F = kQ_1Q_2/r^2$; $Q_1 = 566$ | | (10 ·· (J) | | 2 | | | | | | $F = 9 \times 10^9 \times 56 \times 36 \times$ | $(1.6 \times 10^{-19})^2/(1.3 \times 1)^2$ | $0^{-14})^2$; = 2.7(4) x 10^3 | | 2 | | | | | | | | | Total | 10 | | | 5 | a | | B = F/II with symbols e | | | - | 1 | | | | b | ı | explicit reference to I a
arrow towards centre of | | define from F = BQv e | tc | 1 2 | | | | D | ii | field out of paper; Flem | | g protons act as conve | entional | 1 | | | | | | current | | | | 1 | | | | | iii
iv | $F = Bev \ allow BQv$
$F = mv^2/r$; $Bev = mv^2/r$ | 'r · | | | 1
2 | | | | | | $B = mv/er = 1.67 \times 10^{-1}$ | | 10 ⁻¹⁹ x 60) ; = 0.0026 ; | ; T | 3 | | | | | v | the field must be doubl | led : D v (ee m e e | | v Wb m ⁻² | 4 | | | | | • | force is required to ma | • | • | zaseu | 1
1 11 | | | | | | · | | | Total | 13 | | | 6 | а | i | cosine curve; | | | | 1 | | | | | | | sensible (exponential) | decay of amplitude w | <i>i</i> ith time; | 1 | | | | | ii | correct period
amplitude will decay m | ore rapidly: greater d | amning/air resistance | on | 1 | | | | | •• | wings or greater damp | | | | | | | | | | effectively cease in sho | orter time; greater en | ergy/amplitude loss pe | er cycle | 2 | | | | | | or AW frequency will decrease | e/period increase: gre | eater mass/inertia of s | vstem | 2 7 | | | | b | • | resonance occurs at /c | | | • | 1 | | | | | | object/system | (at this fraguency) | , | | 4 | | | | | | caused by driving force when maximum energy | | iver and driven/maxim | ıum | 1 | | | | | | amplitude achieved | , | max 2 i | | 1 . | | | | | • | small amplitude (≈ that | | uencies/less than 1.0 | Hz; | 1 | | | | | | driver and driven in phase amplitude rises to max | | | | 2 | | | | | | driver and driven 90° o | | | | - | | | | | | (very) small amplitud | | | | 1 | | | | | | driver and driven (186 for accurate reference | | | | 2 5 | | | | | | marks | - 15 piidoo oiiiito do | III Italios, Du | ,a. U | v | | | | | | | | | Total | 12 | | | Mark Scheme | Unit Code
2824 | Session
June | Year
2005 | Final
Version | | | |-------------|---|---|--|--------------------------------------|--|--| | Page 3 of 3 | | | | | | | | Question | Expected Answers | | | Marks | | | | 7 a | α helium nucleus β electron γ photon/e-m radiation/energy α charge +(2e) mass $4m_p/4u$ β charge –(e) mass m_e γ charge 0 mass 0 α emission energy 3 – 7 MeV β emission energy 1 – 2 MeV γ emission energy about 1 – 2 MeV or all of the same order of magnitude/AW α monoenergetic from given nuclide β range of emission energies from | | | | | | | | given nuclide from zero nuclide or comparison i α range 3 – 7 cm of air law in air/ order of kms | n terms of velocities β range 1 – 2 m of | air γ range inverse | 1
square
1 | | | | | α absorbed by paper β Pb sheet α strongly ionising β wany other sensible comp | veakly ionising γ ha | rdly ionising at all | to cm of
1
1
6 marks 1 6 | | | | b | range/penetration/absor
further progress made to
suitable arrangement ar | o answer question of | therwise: | | | | | • | diagram range/penetration/absor α place detector very control paper screen or mover interpret result; control | rption experiment:
lose/ 2cm from source
e back to 10 cm or m | e; measure count ra
nore, measure count | te, use rate, | | | | | from same source
β place detector e.g. 10
sheets of Al until count of | | | e; | | | | | interpret result γ place detector e.g. 10 sheets of Pb until count result | | ckground level; inter | | | | | • | aliter deflection experim needs vacuum for α exp source for radiation pass deflection or not of partic | periment;
ses through region o | • | 1
1 | | | | | emissions;
detail of directions; all 3
unless vacuum mention | correct – 2 marks ca | an only score max o | 2 | | | | | amount of curvature det
particle
Quality of written commo | • | • | of 1
6 marks 1 6
4
Total 16 | | | | | | | | 10101 | | |