1 (a)	3×10^8 (ms ⁻¹) (Do not allow 'speed of light' / c)		
(b)(i)	$v = f\lambda$ 3.0× 10 ⁸ = $f\lambda$ / 3.0 × 10 ⁸ = f × 8.8×10 ⁻⁷ frequency = 3.41 × 10 ¹⁴ (Hz) ≈ 3.4 × 10 ¹⁴ (Hz)	C1 A1	
(b)(ii)	(e.m.f =) $\frac{W}{Q}$, with W = energy (transformed to electrical) and Q = charge	AI	
	Or Energy transformed by / per unit charge / 1C (from chemical to electrical) (Allow: 'energy gained by / per unit charge / 1C / one coulomb')	(B1 B1	
(b)(iii)	$I = \frac{\Delta Q}{\Delta t}$ Allow any subject, with or without Δ notation	B1	
(b)(iv)	$Q = 1.4 \times 10^{-3} \times 0.20$ charge = 2.8×10^{-4} (C)		
(b)(v)	W = VQ / energy = $VQW = 3.0 \times 2.8 \times 10^{-4}energy = 8.4 \times 10^{-4} (J) (Possible ecf)$	C1 A1	
(c)	Radio waves: 1.5×10^3 m Filament lamp: 5.0×10^{-7} m $/ 8.8 \times 10^{-7}$ m X-Ray machine: 8.0×10^{-9} m	B1 B1 B1	
	гто	tal: 12]	
2 (a)	length (cross-sectional) area (Allow: radius / diameter / thickness / width)	B1 B1	
(b)(i)	$R = \frac{\rho L}{A}$ (Allow any subject)	C1	
	$\rho = \frac{0.54 \times [\pi \times (0.135 \times 10^{-3})^{2}]}{1.8}$ $\rho = 1.72 \times 10^{-8} \approx 1.7 \times 10^{-8}$ (Deduct one mark for 10 ⁿ error)	C1 A1	
	$(\rho = 6.87 \times 10^{-8}$ scores 2/3 if 'diameter' is used) $(\rho = 1.72 \times 10^{-5} \ \Omega \text{mm}$ scores 4/4) unit: Ωm	B1	
(b)(ii)	 Any <u>four</u> from: (Allow AW) 1. Resistance of the wire increases (as the temperature is increased) 2. The current decreases / the ammeter reading falls 3. The decrease in current justified in terms of 'I = VIR' 4. The voltage remains the same / the voltmeter reading remains the same 5. The electrons (within the wire) collide <u>more</u> (often with the atoms) / the 	B1 B1 B1 B1	

	atoms vibrate <u>more</u> QWC for 'spelling and grammar'	(Do not allow 'particles' vibrate more)	B1 B1
		[Total	: 11]
3 (a)	Correct direction of the magnetic field The magnetic field pattern is correct 'Parallel' field lines within the core of	and 'symmetrical' (≥ 2 lines)	B1 B1 B1
(b)(i)	$(B =) \frac{F}{II}$ F = force (on conductor),	<pre>/ = current and L = length (in field)</pre>	(B1)
	Or Force (experienced) per / by unit ler (Reference to 1m or 1A scores 0/1) The (magnetic) field is at right angle	ngth of conductor carrying a unit current s	B1 B1
(b)(ii)	F = BIL (Allow any subject) force = 6F / increased by (Do not allow 'increase by' 6)	a factor of 6	C1 A1
	(Do not allow increase by o)	[Tot	al: 7]
4		1.5	
(a)	E = I(R + r) or $E = V + Ir$ /	$R_T = \frac{1.5}{0.60} = (2.5)$ / $V_R = 1.8 \times 0.6$	6 C1
	1.5 = 0.60 (<i>r</i> + 1.8) /	$r = 2.5 - 1.8$ $r = \frac{1.5 - 1.00}{0.6}$	S C1
	$r = 0.70 (\Omega)$	(Allow 1sf answer)	A1
(b)(i)	R	P = VI and $V = IR$	C1
	$36 = \frac{12^2}{R}$	$I = 3.0 \text{ (A) hence } R = \frac{12}{3.0}$	
	resistance = $4.0 (\Omega)$	(Allow 1 sf answer)	A1
(b)(ii)	$R_{\text{series}} = 30 \ (\Omega)$	1 1 1 1	C1
	$R = \frac{30 \times 4.0}{30 + 4.0} \qquad I \qquad \frac{1}{R} = \frac{1}{3}$	$\frac{1}{30} + \frac{1}{4} \qquad I \qquad \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	C1
	resistance = $3.53 \approx 3.5 (\Omega)$	(Possible ecf)	A1
(b)(iii)	$I_{\text{lamp}} = \frac{36}{12} \text{ or } 3.0 \text{ (A)}$ $I_{20\Omega} =$	$\frac{12}{30}$ or 0.40 (A)	C1
	ratio = 7.5 / ratio = $\frac{30}{4}$		A1
	•	[Tota	l: 10]

5 (a)

(b) **C1**

No current (in circuit) / 'open' circuit / p.d. between X and Y is 5.0 V

 $3.4 = \frac{168}{168 + R} \times 5.0$ / $\frac{1.6}{3.4} = \frac{R}{168}$ / $R = \frac{1.6}{2.02 \times 10^{-2}}$ C₁

resistance $\approx 79 \text{ (k}\Omega)$ (Total resistance of 250 k Ω scores 2/3)

[Total: 4]

B1

A1

C1

C₁

6

x 🗸 🗸 x (a) $B1 \times 2$

All correct 2 marks; Three correct 1 mark; Two (or less) correct 0 mark

(b) Any six from: (Allow AW)

- 1. Photoelectric effect is the removal of electrons (from metals) when exposed to light / u.v. /e.m. radiation / photons **B1** 2. <u>Surface</u> electrons are involved / electrons released from the <u>surface</u>
- **B**1 3. A single photon interacts with a single electron **B**1
- 4. Energy is conserved (in the interaction) **B1**
- 5. Energy of photon = hf or $\frac{hc}{2}$ **B1**
- 6. Reference to Einstein's photoelectric equation: $hf = \phi + KE_{(max)}$ C1
- 7. photon energy = work function (energy) + (maximum) KE (of electron) **A1**
- 8. PE effect takes place / electron(s) released when $hf > \phi$ / $hf = \phi$ / frequency is greater / equal to threshold frequency **B1**
- 9. The (maximum) KE of electron is independent of intensity when electrons are emitted **B1**
- 10. Intensity increases the rate / number of electrons when emission occurs **B**1
- 11. PE effect does not take place / no electrons emitted when $hf < \phi$ / frequency < threshold frequency **B1**
- 12. Intensity has 'no effect' when there is no emission of electrons **B1** QWC for 'organisation' **B**1

 $E = \frac{hc}{\lambda}$ / $f = 7.5 \times 10^{17} \text{ (Hz)}$ E = hf(c)(i)1.

('E = hf can be secured either in (c)(i)1. or (b))

$$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{4.0 \times 10^{-10}} \quad / \quad E = 6.63 \times 10^{-34} \times 7.5 \times 10^{17}.$$

energy = 4.97×10^{-16} (J) $\approx 5.0 \times 10^{-16}$ (J) (Allow 1 sf answer here) **A1**

- $E = \frac{4.97 \times 10^{-16}}{1.6 \times 10^{-19}}$ (Possible ecf from (c)(i)) (c)(i)2.energy = 3.1×10^{3} (eV) **B1**
- (c)(ii) The answer to (c)(i)1. and 1.4 (W) are used to determine the rate of photons C1 number = $\frac{1.4}{4.97 \times 10^{-16}}$

number = 2.8×10^{15} (s⁻¹) (If 3100 eV is used, then allow 2/3 for 4.5×10^{-4}) **A1**

∏otal: 16]

(Possible ecf)