Mark Scheme 2826/01 June 2005

UNIPHING CENCEPTS IN

2826/01		Mark Scheme	June 2005	
1	(a)v = u +	t at no, but if u is zero then v is proportional to t	1 .	
		provided a is constant	1	2
	pV = nR1	not unless T is in kelvin	1	
	pv – me	and both n and V are constant (R is a constant)	1	2
		and bearing and beneficial (11 to a constant)	•	~
	P = Fv	yes if <i>v</i> is constant	1	
		but all three terms can vary so proportion unlikely	1	
		then EITHER if v is constant then P and F will also be constant		
		OR P is proportional to F when going up hills of different gradient	t	
		(at constant <i>v</i>)	1	2
		MAXIMUM 2		
	$A=\pi r^2$	yes (π is a constant and A is directly proportional to r^2)	1	1
	(p)	graph must be a straight line	1	
		graph must go through the origin	1	2
2	(a)	The air in the forest is heated and expands (so it becomes less dense))	1
		and rises 1		
		(cooler) air coming in to take its place (is the wind)	1	3
		{just saying convection current one of first two marks only}		
	(b)	A shiny surface reflects light	1	
		a black surface absorbs light	1	
		shoe itself is black because it does not reflect light	1	
		surface layer (transparent) or polish on shoe reflects light	1	
		reflection depends on texture of surface	1	3
		MAXIMUM 3		

2826/01	Downloaded from http://www.thepaperbank.co.uk Mark Scheme J		une 2005	
(c)	the pendulum bob is travelling in a circle so it is accelerating towards the centre (it has a constant speed in the time interval just before vertical to just after vertical)	1		
	bob is not in equilibrium	1		
	so the tension must be (slightly) larger than the weight of the bob	1	3	
	MAXIMUM 3			
(d)	X-rays have a very small wavelength (compared with 0.1 mm)	1		
	angle of diffraction increases as size of opening decreases	1		
	little diffraction when size of opening is much greater than the wavelength	in 1		
	quantitative values - e.g. gap is 10 ⁸ wavelengths	1	3	
	MAXIMUM 3			
(e)	sound waves are longitudinal waves	1		
	longitudinal waves cannot be polarised	1	2	
(f)	the heat is extracted from the air in the room	1		
	and pumped out the back of the refrigerator	1		
	the motor requires power	1		
	and its waste heat heats the kitchen	1	2	
	MAXIMUM 2			
(a)	(a lower resistance will) take a larger current from the supply	1		
	(power = $V \times I$) so power to/ brightness of headlamps is greater	1	2	
(b)	(first position) has no lights on at all	1		
	(second position just) lights the sidelights	1		
	(third position turns off the sidelights and) just illuminates the headlamp	s 1	3	
(c)	4 V across the internal resistance of the generator	1		
	so current = $4 \text{ V} / 0.50 \Omega = 8.0 \text{ A}$	1	2	

Downloaded from http://www.thepaperbank.co.uk Mark Scheme June 2005 2826/01 1 (d) (i) 12 V across headlamp 1 2 so current = $12 \text{ V} / 4.0 \Omega = 3.0 \text{ A}$ 1 (ii) power = $V \times I$, total current = 6.0 A power supplied = $12 \text{ V} \times 6.0 \text{ A} = 72$ 3 1 watt 1 8 A from generator but only 6 A to headlamps (e) 1 therefore current to battery is 2 A (allow -2 A) 3 1 battery is being charged 1 constant voltage maintained across bulbs (and other components) (f) (i) so brightness of bulbs does not vary (when other components 1 are being used 1 less energy wastage 2 1 can give high current (for starter motor) **MAXIMUM 2** (ii) If the emf of the generator is (equal to or) less than the emf of the battery 1 it is impossible to have it supply more current than the circuit uses 1 Charging the battery is then impossible 1 battery would become discharged 1 2 or other valid response

MAXIMUM 2

4 (a) (i) radioactive implies the emission of ionising radiation

OR emits alpha, beta and gamma radiation

1

(ii) nuclide refers to a particular nuclear structure (with a stated number of protons and neutrons)

(iii) half-life is the (average) time taken for the activity to fall to half its original value

1

2826/01 Mark Scheme June 2005

(b)	tí	me / hour	activity of material / Bq	activity of nuclide X /Bq	activity of nuclide Y		
		0	4600	4200	400		
		6	3713	3334	379		
		12	3002	2646	356		
		18	2436	2100	336		
		24	1984	1667	317		
		30	1619	1323	296		
		36	1333	1050	283		
(i) ar	nd (ii)	2100 as 1	first figure to be filled in i	for nuclide X		1	
		1667				1	
		1050				1	
		idea of s	ubtraction for nuclide Y			1	
		correct v	alues for the ones given	in nuclide Y column		1	5
	(c) :	sensible grap	h plotted			1	
	ı	extrapolation	done			1	
		value 70 ± 5	hours			1	3
	OR	$A = A_0 e^{-\lambda t}$				1	
		$\ln A = \ln A_0 -$	λt				
		e.g. when A	= 296, <i>t</i> = 30 h				
		5.6904 = 5.9	915 – λ x 30			1	
		0.3011/30 = (0.01004 = <i>\lambda</i>				
		$r = \ln 2/\lambda = 6$	9.0 h answers will vary	slightly dependent on s	starting and		
		finishing time	s			1	3

2826/01		01 Mark Scheme	June 2005	
(d)		separate the two nuclides (before starting the count)	1	
		by chemical means (if possible)	1	
	OR	using a centrifuge or diffusion (if isotopes)		
	OR	sensible idea about shielding against one of the emitted particles		
(e)		decay constants or half lives are different	1	
		half-life at the start is approximately that for X	1	
		X decays more rapidly than Y so after a long time the half-life is that for Y	1	
		in between it has a value intermediate between the two (which varies)	1	3
		MAXIMUM 3		
	OR	dealt with mathematically, along the lines of		
		two separate exponential decays	. 1	
		when added together do not give an exponential graph	1	
		with back up maths	1	3