| Abbreviations, annotations and conventions used in the Mark Scheme | /
;
()
ecf
AW | alternative and acceptable answers for the same marking point separates marking points words which are not essential to gain credit error carried forward alternative wording | |--|---------------------------|---| |--|---------------------------|---| | Question | | n | Expected Answers | Ma | ırks | |----------|----------------------------|---------------------------|---|--------------------------------------|-----------------------| | 1 | a
b
c |
 | acceleration ∞ displacement; indication of restoring force by negative sign/acc. in opp. direction to displacement/acc. towards origin/AW linear graph through origin; negative gradient 0.05 (m) $4\pi^2f^2 = a/A$; = 12.5/0.05 = 250 so f = 2.5(1) Hz; T = 1/f (= 0.4 s) cosine wave; correct period of 0.4 s; correct amplitude of 0.05 m | 1
1
2
1
3 | 4
4
3 | | | | 10 | 0; 0.1/0.3/0.5/0.7/0.9 (s) Total | 2 | 2
13 | | 2 | a
b | i
iii
iv
i
ii | $\rho = \text{m/V} = \text{m/Av}; \text{ m} = \text{Apv} = 7.5 \times 10^{-5} \times 1000 \times \text{v} = 0.09$ giving v = 1.2 m s ⁻¹ 2.4 (m s ⁻¹) $F = \text{d (mv)/dt /AW}; F = 0.09 \times (2.4 - 1.2) ;= 0.11 \text{ (N)}; ecf (a)ii$ towards or into shower head/backwards ecf (a)iii $P = (\text{m/s})c\theta ;= 0.09 \times 4200 \times (27 - 15); = 4536 \text{ or } 4500; \text{W or } 4.5 \text{ kW}$ energy losses in pipe from heater to shower head/ less than 100% energy transfer from heater to water/AW $15 + 24 = 39(^{\circ}\text{C})$ | 2
1
3
1
4
1 | 7
6
13 | | 3 | a
b
c
d
e
f | | equally spaced horizontal parallel lines from plate to plate; arrows towards B; quality mark $E = V/d \; ; = 600/0.04 \; ; (= 1.5 \times 10^4 \text{ V m}^{-1})$ $F = QE / 1.6 \times 10^{-19} \times 1.5 \times 10^4 \; ; = 2.4 \times 10^{-15} \; (\text{N})$ $1/2\text{mv}^2 = \text{Fd} \;\; \text{or} \;\; \text{QV} \; ; = 1.6 \times 10^{-19} \times 600 \;\; \text{or} \;\; = 2.4 \times 10^{-15} \times 0.04 \;\; \text{ecf} \; (c)$ or alternative method by constant acceleration formulae; (either method giving $v^2 = 2.1 \times 10^{14} \;\; \text{and} \;\; \text{v} = 1.45 \times 10^7 \;\; \text{m s}^{-1})$ $\sqrt{2}v = 2.05 \times 10^7 \;\; (\text{m s}^{-1})$ fewer electrons will reach grid B or C (as higher initial speed required); so current will fall (to zero if beam is taken to be monoenergetic) | 1
2
2
2
2
2
1
1 | 3
2
2
2
1 | | Ques | tion | | Expected Answers | Marl | ks | |------|------|-------|---|-----------|----| | 4 | а | | C = Q/V or gradient of graph / = 24 μ C/3V; = 8.0 (μ F)
E = ½ CV ² / = $\frac{1}{2}$ x 8 x 3 ² ; = 36 (μ J) ecf a(i) | 2
2 | | | | | iii | or ½ QV /= ½ x 24 x 3 ; = 36 (μ J)
T = RC = (0.04); R = 0.04/8.0 μ = 5.0 x 10 ³ (Ω) ecf a(i) | 2 | | | | | iv | idea of exponential/constant ratio in equal times; which is independent of initial value/AW or argued mathematically in terms of $Q/Q_o = e^{-t/RC}$ give 1 mark for statement that time depends only on time constant/RC | 2 | 8 | | | b | | $C_p = C + C = 6 \mu F$; $1/C_s = 1/2C + 1/C$; = 3/2C giving $C_s = 2C/3 = (2 \mu F)$ 2 sets of (3 in series) in parallel/ 3 sets of (2 in parallel) in series | 3
2 | 5 | | | | | Total | 4. | 13 | | 5 | а | i | number of decays/atoms/nuclei decaying per second/unit time in the source/AW | 1 | | | | | | count (rate) without source present/AW distance of detector from source/dimensions of source or detector | 1 | | | | | | window/efficiency of detector/rate of emission v detection, e.g dead time | | | | | | | correction/other sensible suggestion; reason/effect on count rate | 1
1 | 4 | | | b | Î | (take Ins of both sides) appreciate In $e^{-\lambda t} = -\lambda t$; and In C/C _o = In C - In C _o or when multipyling logs add | 2 | | | | | ii | gradient = 0.056 h ⁻¹ allow $\pm 0.002 h$; T = ln2/ λ =ln2/gradient = ln2/0.056 | | _ | | | С | | h; T = 12.4 h allow \pm 0.4 h mass change/charge change/range/speed of emission/monoenergetic v | 3 | 5 | | | | | range of speed/alpha emitted from only high mass nuclei/number of particles in the decay/other sensible suggestion or further detail | | | | | | | any three | 3 | 3 | | | | | Total | | 12 | | 6 | а | i | BA / = $0.05 \times 0.05 \times 0.026$; = 6.5×10^{-5} ; Wb/T m ²
BA sin 45° /BAcos 45° = 4.6×10^{-5} Wb ecf (a)i | 3
1 | | | | | | BA sin 45 /BAcos 45 = 4.6 x 10 Wb eci (a)i | 1 | 5 | | | b | i
 | a point where curve crosses t-axis | 1
1 | | | | | | voltage is proportional to the rate of change of flux linking the coil; rate of flux change is zero/very small when the flux linking the coil is a maximum | 1 | | | | | | sinusoidal curve; of double the amplitude; and half the period | 3 | 6 | | | | | Total | | 11 | | Question | Expected Answers | Ma | arks | |----------|---|--------------------------------------|---------| | 7 a | proves existence of a nucleus to the atom; containing most of the atomic mass; because of bouncing back; of very small size; because of few scattered through any angles at all; containing charged particles; because the scattering is consistent with the pattern predicted by Coulomb/electrostatic repulsion; | 1
2
2
1
1 | | | | electrons have opposite/smaller charge; and a much smaller mass; a diffraction pattern is observed (superimposed on the Rutherford scattering curve); as the electrons behave like waves; with a λ of the order of d for significant scattering/having a de Broglie wavelength; pattern/size of ring enables radius of the nucleus to be found $\max \lambda$ | 2
1
1
1
1 | 7 | | b | Diagram showing or description of incident beam scattered by or diffracted through crystal at only certain angles; moveable detector to measure angles; electrons are scattered from crystal planes like a diffraction grating/because of the regular array of atoms; constructive interference only occurs at certain angles; depending on λ and d; pattern of maximum signals can be very complex depending on structure/AW; must achieve λ of the order of d for significant scattering; size of pattern depends on ratio of λ /d or maxima occur at angles of about $n\lambda$ /d; de Broglie's relation $p = h/\lambda$ for electrons shows why different energies are needed with this detail worth 2 marks; further detail, e.g. electrons accelerated to MeV for nuclei or a few keV for atomic spacing as λ is known d can be found max 5 Quality of Written Communication | 1
1
1
1
1
1
2
1 | 5
4 | | | Tota | 1 | 4
16 |