

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

PHYSICS A 2821

Forces and Motion

Wednesday

12 JANUARY 2005

Morning

1 hour

Candidates answer on the question paper.
Additional materials:
Electronic calculator
Ruler (cm/mm)
Protractor

Candidate Name	Centre Number				(Candidate Number			

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE			
Qu.	Max.	Mark	
1	10	•	
2	10		
3	13		
4	10		
5	17		
TOTAL	60		

This question paper consists of 14 printed pages and 2 blank pages.

Data

speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$
permittivity of free space,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
elementary charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

Formulae

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$n = \frac{1}{\sin C}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

$$C = C_1 + C_2 + \dots$$

$$x = x_0 \mathrm{e}^{-t/CR}$$

$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

$$x = x_0 e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

critical density of matter in the Universe,

$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

$$=\sqrt{(1-\frac{v^2}{c^2})}$$

current,

$$I = nAve$$

nuclear radius,

$$r = r_0 A^{1/3}$$

sound intensity level,

$$= 10 \lg \left(\frac{I}{I_0}\right)$$

Answer all the questions.

1 (a) The following is a list of scalar and vector quantities.
 acceleration, density, displacement, energy, power, speed, time, weight.
 In the blank spaces provided in Fig. 1.1, list the quantities as either scalars or vectors.

[4]

scalar	vector

Fig. 1.1

(b) Fig. 1.2 shows the path of a ball as it is passed between three players. Player A passes a ball to player B. When player B receives the ball, she immediately passes the ball to player C. The distances for each pass are shown on Fig. 1.2.

Fig. 1.2

The ball takes 2.4 s to travel from player A to player C.

		3
(i)	Cal	culate, for the total journey of the ball
	1.	the average speed of the ball
		average speed = m s ⁻¹ [2]
	2.	the magnitude of the average velocity of the ball.
		average velocity = m s ⁻¹ [2]
(ii)	Exp	plain why the values for the average speed and average velocity are different.

[Total: 10]

2	(a)	State the two conditions necessary	y for a s	ystem	to be in	equilibrium.
---	-----	------------------------------------	-----------	-------	----------	--------------

1.	
2	
∠.	
	[0]

(b) Fig. 2.1 shows a painter's plank resting on two supports A and B.

Fig. 2.1

The plank is uniform, has a weight 80 N and length 2.00 m. A painter of weight 650 N stands 0.55 m from one end.

(i) Show that the force acting on the plank at the support **B** is approximately 540 N by taking moments of all the forces about the support at **A**.

[3]

(ii) Calculate the force acting on the plank at support A.

force at **A** = N [2]

(iii) [Describe and explain what happens to the forces on the plank at A and B if the painter moves towards the support at A . Quantitative values are not required.
•	•••••••••••••••••••••••••••••••••••••••
•	
•	[6]
	[Total: 10]

3 (a) Define acceleration.

(b) Fig. 3.1 shows the velocity *v* of a ball against time *t* as it falls vertically from rest to when it hits the ground at **A**.

Fig. 3.1

Use Fig. 3.1 to show the distance that the ball falls is approximately 1.6 m.

(c)	The initia	ball is in contact with the ground for 20 ms and then rebounds vertically with an all upwards velocity of $5.1 \mathrm{ms^{-1}}$.
	(i)	Calculate the acceleration of the ball as it rebounds while in contact with the ground.
		acceleration = m s ⁻² [3]
	(ii)	Sketch on Fig. 3.1 the velocity against time graph for the ball after it has bounced off the ground until it reaches its maximum height. [3]
(d)	The	ball has a mass of 0.025 kg and rebounds to a height of 1.3 m.
	(i)	Calculate the loss in the potential energy of the ball from the initial point of release at 1.6 m to when it reaches 1.3 m.
		loca in materatial angues.
		loss in potential energy unit [3]
	(ii)	Explain the loss in the potential energy.
		[1]
		[Total: 13]

		10
4 (a)	(i)	Define work done.
	(ii)	
(b)	The the	braking distance x of a car depends on its initial kinetic energy $E_{\rm k}$. Fig. 4.1 shows relationship between $E_{\rm k}$ and x .
	400-	
E _k /kJ	300-	
	200-	
	100-	
	0-	0 10 20 30 40 50 60 <i>x/</i> m
	(i)	Fig. 4.1 Calculate the gradient of the graph.

gradient = J m⁻¹ [2] Explain why the gradient of the graph is equal to the braking force acting on the car. (ii)

(111)	The car has a mass of 800 kg. Calculate the deceleration of the car when braking.	
(iv)	deceleration =	
	[2]	

5	(a)	(i)	Define strain.
		(ii)	Define stress.

			[2]

(b) In this question, two marks are available for the quality of written communication.

Describe an experiment to determine the Young modulus of a metal in the form of a wire.

Your description should include

- a labelled diagram of the apparatus
- the measurements to be taken
- an explanation of how the equipment is used to obtain the measurements
- an explanation of how the measurements would be used to determine the Young modulus.

diagram of the apparatus

measurements to be taken
,
[2]
how the equipment is used to obtain the measurements
now the equipment is used to obtain the measurements
[4]
determination of the Young modulus
[4] Ouglity of Written Communication [2]

END OF QUESTION PAPER

[Total: 17]

BLANK PAGE

15 BLANK PAGE

OCR has made every effort to trace the copyright holder of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.