2822	Mark Sc	heme	January 2005		
1					
(a)	Electron flow is in opposite direct	B1			
(b)	Correct symbol for the LDR		B1		
	(Resistance of LDR) decreases with increased intensity /				
	brightness / light	(AW)	B1		
(c)	current \propto p.d. (Allow 'vol	tage' instead of p.d.)	B1		
	(provided the) temperature (of me	tallic conductor) remains constant	B1		
	(voltage = current × resistance	scores 0/2)			
	(V = IR and R = constant scor	es 0/2)			
(d)(i)1.	<i>R-V</i> graph for metallic conductor:				
	shows $R = \text{constant} / \text{`horizontal lin}$	ne'	B1		
(d)(i)2.	R- V graph for thermistor:				
	shows R has a finite value at $V = 0$		В1		
	shows R decreases as V increases	(Allow a 'curve' or 'straight line') B1		
(d)(ii)1.	Any two from:				
	The resistances larger / line (graph) higher (and horizontal) (Can score on Fig. 1.2 a)				
	The electrons collide more often / frequently (with vibrating atoms)				
	The atoms / ions vibrate 'more'	(Do not allow 'particles' vibrate)	B1 × 2		
(d)(ii)2.	The resistance increases / doubles	(Can be scored on Fig.1.2a)	M1		
	Mention of: $R \propto L$ or $R = \frac{\rho l}{A}$.		A 1		
			[Total: 12]		

2822	Mark Scheme	Janu	ary 2005	
2				
(a)	(Magnetic) flux density / (magnetic) field strength		B1	
(b)	$B = \frac{F}{Il} \qquad \text{and} \qquad T \to N/(Am)$		B1	
(c)(i)	First / index (finger): (Direction of magnetic)	field		
	Second / middle (finger): (Direction of convention	nal) current		
	Thumb: (Direction of) force or n	notion		
	Correct identification of fingers and thumb		B1	
(c)(ii)	Out from (the plane of) paper (Do not allow 'upwards')		B1	
(d)	F = BIl Allow any subject		C1	
	$B = \frac{1.4}{0.078}$		C1	
	$B = 17.949 \approx 18 \text{ (T)}$ (10 ⁿ error: $1.8 \times 10^{-2} \text{ (T)}$	(i) scores 2/3)	A1	
			[Total: 7]	
3				
(a)	The energy transformed by a 1 kW device in a time of 1 hour		B1	
(b)(i)1.	time = $4.0 \times 7 = 28$ (hours) / power = 0.11 (kW)		C1	
	number of kW $h = 0.110 \times 28$			
	number of kW $h = 3.08 \approx 3.1$ (If 4 hours used, then	0.44 scores 1/2)	A1	
(b)(i)2.	$cost = 3.08 \times 7.5$ (Possible ecf)			
() ()	cost = 23 (p)		B1	
(b)(ii)	Q = It (With or withou	It Δ notation)	C1	
() ()	$Q = 0.48 \times 28 \times 3600 / Q = 0.48 \times (1.008 \times 10^5)$ (A	$100 t = 1 \times 10^5 \text{ (s)}$	C1	
	$Q = 4.84 \times 10^4 \approx 4.8 \times 10^4 \text{ (C)}$		A1	
	(If $t = 28$ used, then $Q = 13.4$ allow 2/3) (If $t = 4$ used, then $Q = 1.92$ allow 1/3) (If 1.44×10^4 s used, then 6.91×10^3 scores 2/3)			
(b)(iii)1.	$E = hf / E = \frac{hc}{\lambda} / f \approx 5.4 \times 10^{14} \text{ (Hz)}$		C1	
	$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{5.5 \times 10^{-7}} / E = 6.63 \times 10^{-34} \times 5.455$	5×10^{14}	C1	
	$E = 3.62 \times 10^{-19} \approx 3.6 \times 10^{-19} $ (J)		A1	
(b)(iii)2.	number = $\frac{8.0}{3.62 \times 10^{-19}}$		C1	
	number = $2.21 \times 10^{19} \approx 2.2 \times 10^{19} \text{ (s}^{-1}\text{)}$ (Possib	le ecf)	A1 [Total: 12]	

2822	Mark Scheme	January 2005
4		January 2000
(a)	Maximum of five marks	
	Up to four from:	
	$\lambda = \frac{h}{mv} \qquad / \qquad \lambda = \frac{h}{p}$	M1
	All symbols $(\lambda, h, m \text{ and } v \text{ or } p)$ defined	A1
	Electrons travel / move / propagate (through space) as a wave	В1
	Electrons are diffracted / 'spread out'	M1
	by the atoms / spacing between the atoms	A 1
	The electrons are diffracted when their wavelength is less than or	
	comparable or same as size of atoms / gap between the atoms	B1
	Up to two from:	
	(When the speed of electrons is increased) the rings 'get smaller'	B1
	(At greater speed of electrons) the wavelength is shorter	B1
	(At greater speed of electrons) there is less diffraction	B1
	OWG	
	QWC Organisation	B1
	Spelling, punctuation & grammar	B1
(b)	Electrons have mass / momentum / charge / can be 'accelerated'	B1
		[Total: 8]

B2

5

(a) For e.m.f. the energy transfer to electrical / from other forms or 'charges gain energy'

Or

For p.d. the transfer is from electrical / to heat / to other forms or 'charges lose energy'

(b) The sum of currents entering point / junction is equal to the sum of currents out of that point / junction

(The algebraic sum of current at a point = 0 scores 2/2)

(-1 if sum is not mentioned and -1 if point / junction is not mentioned)

(c)(i) current = 0.80 - 0.20

current = 0.60 (A) B1

(c)(ii) V = IR / $V = 0.60 \times 18$ (Possible ecf)

 $V = 10.8 \approx 11 \text{ (V)}$

(c)(iii) $R_{\rm T} = \frac{10.8}{0.20} = 54 \,\Omega \qquad \qquad \text{(Possible ecf)} \qquad \qquad \text{C1}$

 $R_{\text{diode}} = 54 - 46$ C1

 $R_{\rm diode} = 8.0 \; (\Omega)$

(<u>Alternatively</u>: $V_{46\Omega} = 46 \times 0.20 = 9.2$ (V)

 $V_{\text{diode}} = 10.8 - 9.2 (= 1.6)$ C1

 $R_{\text{diode}} = \frac{1.6}{0.20} = 8.0 \,(\Omega)$ A1)

(c)(iv) $P = \frac{V^2}{R}$ / $P = I^2 R$ / P = VI

 $P = 0.20^2 \times 8.0$ (Possible ecf)

P = 0.32 (W)

[Total: 11]

2822	Mark Scheme		January 2005
6		•	January 2005
(a)(i)	Photoelectric (effect)		B1
(a)(ii)	10^{-9} (m) \leq wavelength $\leq 4 \times 10^{-7}$ (m)		B1
(b)(i)	(Minimum) energy needed to free an electron /an electron to escape		DI
(b)(ii)	(from the metal surface)		
	speed of light $/3 \times 10^8$ (m s ⁻¹) $/c$		B1
(b)(iii)1.	$hf = \phi + KE_{(max)}$ (Allow any s	ubject)	C 1
	$KE_{max} = 2.8 - 1.1 = 1.7 \text{ (eV)}$		C1
	$KE_{max} = 1.7 \times 1.6 \times 10^{-19}$		
(b)(iii)2.	$KE_{max} = 2.7 \times 10^{-19} (J)$		A 1
	$1/2 mv^2 = 2.7 \times 10^{-19}$ (Possible ecf)	C1	
	$\nu = \sqrt{\frac{2 \times 2.7 \times 10^{-19}}{9.1 \times 10^{-31}}}$		
	$v = 7.7 \times 10^5 (\text{m s}^{-1})$		A1
(b)(iv)	No change (because the energy of the photon remains the same)		B1
			[Total: 10]