2525/01		Mark Scheme		January 2005	
1.	(a)	Any 2 from Sun in centre Circular orbits Constant orbital speed	1 1 1		
	(b)	Any 2 from Elliptical orbits Sun at focus (accept diagram) Non-constant speed (accept equal areas in equal times) No epicycles	1 1 1 1	Total 4	
2.	(a)	i. $F = GMm/r^2$ or $F \alpha Mm/r^2 \frac{\text{with labels}}{\text{ii finite universe contracts/ resultant force on stars}}$	1 1		
	(b)	Any 2 from i. (satellite B) has larger circumference/smaller velocity (satellite B) Gravitational field strength is less (satellite B) Centripetal force is less	1 1 1		
		ii.(accept calculation from either satellite) $r_1^3/T_1^2 = r_2^3/T_2^2$ satellite A satellite B $r_2^3 = 7000^3 \times 57.2^2/1.63^2$ $r_2 = 75,030 \text{ km}$ $r_2 = 75,000 \text{ km}$ $r_2 = 75,000 \text{ km}$ $r_2 = 75,000 \text{ km}$	1 1 1		
	(c)	i. measure of brightness as seen from Earth.	1		
		ii. $m_1 - m_2 = 2.5(1) \log (I_2/I_1)$ $10^{12/2.5} = I_2/I_1$ $I_2/I_1 = 60,000$ Accept:	1 1 1		
		ratio of 2.5 for each unit of apparent magnitude intensity $I_2/I_1 = (2.5)^{12}$ $I_2/I_1 = 60,000$	1 1 1		
		interchanging I_2 and I_1 numerically gives $2/3$			
	(d)	Land-based are (any 3) 1 mark for each more light can be collected/ made larger more stable more manoeuvrable cheaper to build/repair longer lifetime/ not exposed to high velocity particles			
		greater access	Total	14	

2525/01		Mark Scheme		January 2005				
Mark Scheme: 2825/1 January 2005								
3.	(a) (b)	uniform intensity detected in all directions/ isotropic Hydrogen and helium in early stars and sun Sun has greater proportion of helium than early stars/ H changed to He by fusion in sun. Virtually no higher elements in first stars/ sun contains traces of higher elements (accept specific examples up to iron)	1 1 1					
	(c)	Any 4 from (each point scores 1 mark) Dark lines Crossing continuous spectrum Absorption occurs in stellar atmosphere Only get information about atmosphere Measurement of wavelength Combinaton of lines unique to element.	Total	8				
4.	(a)	 correct position of M correct position of W 	1					
	(b)	 (i) Any 3 from A has red giants / B has no red giants A has white dwarfs/ B has no white dwarfs A has high and low mass stars/ B has high mass only Reference to spectral types (ii) Any 2 from B has an excess of hot/bright/main sequence stars presence of red giants/ white dwarfs in A with reference to timescale. 	1 1 1 1					
5.	(a)	High mass stars shorter lived than low mass Any 5 from red shift data for galaxies (accept stars) calculate velocity from red shift galaxies/ stars receding from Earth distance data for galaxies/ stars velocity α distance / ν /r = constant / ν -r graph straight line universe began at a single point	1 Total 1 1 1 1 1	7				
	(b) (c)	Any two stars rotate around galactic centre star with velocity component towards Earth reference to motion/shape of galaxy or other valid points eg blue shift $H_o = 75/3 \times 10^{19} \text{ s}^{-1}$ $t \approx 1/2.5 \times 10^{-18}$	1 1 1 1					
		$t \approx 4 \times 10^{17} \text{ s}$	1					

2525/01		Mark Scheme	January 2005				
Mark Scheme: 2825/1 January 2005							
5.	(d)	critical density is that for flat universe density $> p_0$ universe closed/contracts/big crunch density $< p_0$ universe open/ expands forever any 2 from fate unknown because size/mass/density universe uncertain fate unknown because p_0 / H_0 not known	1 1 1 1 1 Total 15				
6.	(a)	 (i) 7 points plotted correctly all points plotted correctly (ii)both sides of graph correct peak drawn/ lines merge assymtotically (iii) 10 days ± 1/2 day 	1 1 1 1 1				
	(b)	(i) one ray with correct curvature second ray drawn, deviation correct, rays meet at Earth.(ii)reference to focussing effect max intensity when Earth in line (with star-black hole)	1 1 1				
	(c)		1 1 1 1 Total 11				

January 2005 2525/01 Mark Scheme Mark Scheme: 2825/1 January 2005 speed of light invariable 1 7. (a) All inertial reference frames equivalent/no frame preferred/ laws of physics are the same in all inertial frames. 1 Any 5 (b) 1 Observer A at rest at midpoint of tunnel 1 Observer B moving in train (at constant speed) Train same length as tunnel according to stationary observer A (who sees lights flash simultaneously) 1 Train longer than tunnel according to observer B (who sees lights flash at different times) 1 Explanation of what length contraction is. 1 Any other valid point: symmetry, c is constant, 1 how lights come on. (i) $v = 11000 \times 10^3 / 2.73 \times 10^{-13}$ (= 4.03 x 10¹⁹ ms⁻¹) 1 (c) 1 (ii) velocity > c no matter/energy/information/transferred between Earth observatories/ reference to c as limiting speed 1 (iii) $v = 2\pi \times 9.46 \times 10^{18} / 1.49$ 1 $(=4 \times 10^{19} \text{ ms}^{-1})$ 8. As for common question in Telecommunications unit.

Total 11