Quest	ion		Expected Answers	Mark	(S
1 a	1		acceleration ∞ displacement/distance from a fixed point; directed towards that point/indication acc. and displ. in opp. direction for symbols without explanation ($a = -\omega^2 x$ or $a \propto -x$) max 1 mark	1 1	2
ł)		arrow downwards through centre of bob, labelled weight/gravity/mg; upward arrow on string, labelled tension	1	2
(i	reading T = 1.6 s; 2 marks for correct f without working $f = 1/T = 0.625$ to 0.632 ; Hz or s^{-1}	1 2	3
		ii	tangent to graph at displacement = 0; gradient = 0.20 ± 0.03 (m s ⁻¹) or v = $2\pi fA$; = 2 x 3.14 x 0.625 x 0.05 = 0.20 (m s ⁻¹)		2 2
	d	i ii	none ; as period independent of amplitude doubled; as twice the distance covered in the same time/ from c(ii) or $v \propto -A$ /AW possible ecf from d(i) increased because the gradient is steeper/greater distance in same time worth 1 mark only Total	1	2 13
	a b	i ii	Arrows of equal length towards; and directed through centre of orbit For circular orbit centripetal force required; force of attraction is along line joining stars which must therefore be diameter of circle/AW F: force (of attraction) between M's/stars		2
	C	i	G : gravitational constant/AW M : mass of a star R : radius of orbit (of star system) 1 mark for 2 correct; 2 marks for all 4 $v = distance/time$ or circumference of circle/period = $2\pi R/T$; $F = mv^2/r$ or Mv^2/R ; so $F = 4\pi^2 MR/T^2$		2 1 2
	d	iii	$F = MV/I$ of MV/K, so $F = 4\pi$ MIG/I $F = GM^2/4R^2 = 4\pi^2MR/T^2$; suitable algebra to show $M = 16\pi^2R^3/GT^2$ $M = 16 \times 9.87 \times (5 \times 10^{10})^3/6.67 \times 10^{-11} \times (8.64 \times 10^6)^2$ giving $M = 4.0 \times 10^{30}$ (kg) possible ecf from $b(i)$	1	2 2 13
3	а		C = Q/V with symbols explained or charge per unit potential		
	b	i 1 2 ii 1 2	difference/voltage Q = CV; = $4.7 \times 10^{-7} \times 11 = 5.2 \times 10^{-6}$ (C) or $5.2 (\mu C)$ E = ½ QV or ½ CV ² ; = $2.8(4) \times 10^{-5}$ (J) or 28.4μ (J) possible ecf from b(i) V = IR; I = $11/2200 = 5$ (mA) or 0.005 (A) T = RC; = $2200 \times 4.7 \times 10^{-7} = 1.0 \times 10^{-3}$ (s)		1 2 2 2 2
	С	i ii	attempt constant ratio for equal time intervals or other suitable method; achieved successfully $\Delta Q = I \times \Delta t$; estimates area under graph between t = 1 ms and t = 2 ms; $\Delta Q = 1.20 \pm 0.1 \times 10^{-6}$ (C) accept analytical answer using exp. function	1 1 2 1	2 3 14

Question			Expected Answers	Mai	ks
4	a b	i ii i	Flux = B x A (normal to B) with symbols explained Linkage = N x flux; $A = x^2$ so linkage = NBx^2 Statement of Faraday's law or indication e.g.V = d(NBx^2)/dt from a(ii);	1	1 2
		ii	V = NBxdx/dt or V = NBxv / argue area swept out per second as xv /AW; giving V = $1250 \times 0.032 \times 0.02 \times 0.1 = 0.08$ V or 80 mV equal positive and negative regions equal positive and negative values of 'maxima' labelled on y-axis	2 1 1	3
			value changes within correct time zones, t = 0.2 to 0.4, 0.6 to 0.8 s 'square pulse' shape sinusoidal graphs score zero marks	1	4
			Total		10
5	а		the splitting of a nucleus into (roughly two equal) parts (spontaneously or by absorption of a neutron)		1
	b	i ::	136 ; 38	•	2
		ii	$\Delta E = c^2 \Delta m$; $\Delta m = 0.213 u$; $\Delta E = 9 \times 10^{16} \times 0.213 \times 1.66 \times 10^{-27}$ = 3.2 x 10 ⁻¹¹ (J)	3	3
	С	i	E = $N_A/235 \times \Delta E$;= $6.02 \times 10^{23}/235 \times 3.2 \times 10^{-11} = 8.2 \times 10^{10}$ (J)		2
		ii	or E = $0.001/235 \times 1.66 \times 10^{-27} \times \Delta E$ etc. Q = mcθ;	1	
			$m = 8.2 \times 10^{10} / 4200 \times 80$;	1	
			= 2.4×10^5 (kg)	1	3 11
6	а		α : +2e 4m _p	1	
			β : -e $m_{\rm e}$ or $1/_{1836} m_{\rm p}$	1	•
	b	ì	γ : 0 0 35 ± 1 (mm)	7	3 1
	-	il ·	E = ½ mv ² ; possible ecf from (a)	1	•
			E = $\frac{1}{2}$ mv ² ; possible ecf from (a) 5 x 1.6 x 10 ⁻¹³ = 0.5 x 4 x 1.67 x 10 ⁻²⁷ x v ² ;	1	
			$v = 1.55 \times 10^7 \text{ (m s}^{-1)}$	1	3
		iii	collision with air molecules; alpha particles ionise air/ collision is inelastic/ mechanism of energy transfer during collision	1	2
	С		α radiation cannot penetrate air/paper/plastic;	1	2
			so the film is not exposed to α radiation/so α radiation is not detected	1	
			β will penetrate thin plastic/window/AW; gives benchmark for comparison	1	
			with other parts of film/AW	1	
			γ radiation is much more penetrating than β / only γ passes through (metal/thicker/denser) filters/AW	1	
			different thicknesses of plastic (for β)/(metal, etc. for γ) filter will		
			discriminate strength/AW;	1	
			other sensible statement max 4 marks Total	1	4 13

Question		Expected Answers		Marks	
7	а	Momentum of a particle = mass x velocity, linear momentum is constant in the collision; always/ in every collision; because there are no external forces total energy is constant in every collision; k.e. is (only) conserved in elastic collisions; otherwise some k.e. is lost/dissipated/randomised/turned to heat,etc max 6 marks	1 2 1 1 1	6	
	b	Neatest and possibly shortest answer is in terms of constant steady motion of the centre of mass of the system there are several ways of approaching a satisfactory answer with many marking points; use 1 mark per valid point and 1 mark per valid reason. here is a selection of likely marking points: small particle incident on large one		Ū	
		Analogy with ball bouncing off wall;	1		
		energy transfer to massive particle is very small;	1		
		as v of massive particle is so small; because momentum conserved; large particle incident on small one	2		
		massive particle can only transfer a small fraction of its momentum;	1		
		so keeps most of its k.e.; small particle hardly needs any k.e.; alternative wording such as:	2		
		small particle moves off at roughly twice velocity of massive particle;	1		
		massive particle hardly slowed	1		
		common features which can be expressed in many alternative ways	_		
		(constant/steady) motion of c.of mass of system (towards right)	1		
		incident momentum very small in first case compared to second	1		
		ratio of masses to inverse ratio of velocities/distances moved	1		
		k.e depends on v ² , so v ratio has more effect than mass ratio on energy	_		
		transfer	1		
		any other valid points for each mathematical expositions acceptable as long as they reach meaningful conclusions	1		
		max 6 marks		6	
		Quality of written communication		4	
		Total		16	

Criteria for assessment of written communication

4 marks

- The candidate expresses ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically.
- Arguments are consistently relevant, based on sound knowledge of Physics, and are well structured.
- There are few, if any, errors in grammar, punctuation and spelling.

3 marks

- The candidate expresses moderately complex ideas clearly and reasonably fluently through well-linked sentences and paragraphs.
- Arguments are generally relevant being based on a good knowledge of physics, and are well structured.
- There are occasional errors in grammar, punctuation and spelling.

2 marks

- The candidate expresses straightforward ideas clearly and accurately, if not always fluently. Sentences and paragraphs are not always well connected.
- Arguments may sometimes stray from the point or be weakly presented.
- There are some errors in grammar, punctuation and spelling, but not to suggest a serious weakness in these areas.

1 mark

- The candidate expresses simple ideas clearly, but is imprecise and awkward in dealing with complex or subtle concepts.
- Arguments are of doubtful relevance or obscurely presented.
- Errors in grammar, punctuation and spelling and noticeable and intrusive, suggesting weaknesses in these areas.

0 marks

- Even simple ideas are not expressed clearly.
- Arguments are irrelevant or poorly stated.
- There are gross errors in grammar, punctuation and spelling.