| Question | Expected Answers | Marks | |----------|--|------------------------| | 1
(a) | 10 ⁻³ to 10 ⁻¹ (m) (Allow range: 0.0005 m to 0.15 m) | B1 | | (b) | Any one from: Travels at the speed of light / 3 × 10⁸ (ms⁻¹ in vacuum) Travel in vacuum (Allow 'free space' but not just 'space') Transverse (wave) / can be polarised Consists of oscillating electric and magnetic fields Can be reflected / refracted / diffracted / shows interference (Behave as) photon(s) Warms food | B1 | | (c) | (e.m.f. =) $\frac{W}{Q}$ / (e.m.f. =) $\frac{78}{24}$ (e.m.f. =) 3.25 \approx 3.3 (V) | C1
A1
[Total: 4] | | 2 | | | | (a) | Energy (transformed by a device working) at 1 kW for 1 hour | B1 | | (b) | E = Pt / 5.8 = 0.12 × time / (time =) 48.3 (hr) (time =) 1.74 × 10 ⁵ ≈ 1.7 × 10 ⁵ (s) | C1
A1 | | | | [Total: 3] | | | | | | Question | Expected Answers | Marks | |----------|---|------------| | 3 | | | | (a) | Line crosses 'y-axis' at 1.4 (V) $I = E$ or 1.4(V) when $I = 0$ $V = E - Ir$, since $I = 0$ (Hence $V = E$ or 1.4(V)) | B1 | | (b)(i) | (Graph extrapolated to give) current = 2.0 (A) (Allow tolerance \pm 0.1A) | B1 | | (b)(ii) | $E = I_{(max)} r$ gradient = r (Ignore sign)
$(r = \frac{1.4}{2.0})$ (Attempt made to find gradient) | C1 | | | $r = 0.7(0) (\Omega)$ $r = 0.7(0) (\Omega)$ (Possible ecf) | A1 | | (b)(iii) | (excessive) heating of <u>cell</u> / energy wasted <u>internally</u> / cell might 'explode' / <u>cell</u> goes 'flat' (quickly) | B1 | | | might explode / <u>cell</u> goes hat (quickly) | [Total: 5] | Question | Expected Answers | Marks | |-----------|---|-------------| | 4 | | | | (a) | Correct circuit for both lamps in parallel (ignore ammeter here) | B1 | | | Ammeter placed correctly in <u>series</u> with P | B1 | | (b)(i) | The resistance of LDR/circuit changes (as light intensity | B1 | | | changes) When blade blocks light, resistance of LDR/circuit is large(r) (ora) | B1 | | | Correct statement about p.d (Possible ecf) | B1 | | (b)(ii)1. | | | | | (V = 5.0 - 3.0)
2.0 (V) (Allow 1 sf answer) | B1 | | (b)(ii)2. | | | | | $V = \frac{R_2}{R_1 + R_2} \times V_0$ | C1 | | | $ \begin{vmatrix} R_1 + R_2 \\ (3.0 = \frac{R}{R + 2200} \times 5.0) \\ R = 3300 \ (\Omega) \end{vmatrix} $ (R = 3.0 / 9.1 × 10 ⁻⁴)
R = 3300 \ (\Omega) Possible ecf | | | | $R = 3300 (\Omega)$ $R = 3300 (\Omega)$ Possible ecf | A1 | | | (For V_{LDR} = 2.0 V, R = 1.47 kΩ. This scores 1/2) (If 3.5 V given in (b)(ii)1. , then R = 940 Ω. This scores 2/2) | ; | | | | [Total: 8] | | | | ~ √. | | | | | | | | | | | | | | | | | | Question | Expected Answers | Marks | |-----------|---|-------------| | 5
(a) | (resistance =) p.d./current (Allow use of 'voltage') ((resistance =) ratio of p.d. to current 2/2) ((resistance =) voltage per (unit) current 2/2) ((R =) V/I scores 1/2) ((resistance =) voltage per (unit) ampere scores 1/2) | B2 | | (b)(i) | Parallel | B1 | | (b)(ii)1. | $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots / \frac{1}{R} = \frac{3}{18}$ | C1 | | | $(R =) 6.0 (\Omega)$ (Allow 1 sf answer) | A1 | | (b)(ii)2. | $P = \frac{V^2}{R}$ $(Allow P = VI \text{ or } P = I^2R)$ $(P = \frac{12^2}{6})$ | C1 | | | $(P = \frac{12^{-}}{6})$ $P = 24$ (W) (Possible ecf from (b)(ii)1.) (If 18 Ω used, $P = 8$ (W). Allow 1/2) | A1 | | (b)(ii)3. | $R = \frac{\rho L}{A}$ (Allow other subject) | C1 | | | | C1 | | | $18 = \frac{6.9 \times 10^{-6} \times 0.85}{A}$ $A = 3.26 \times 10^{-7} \approx 3.3 \times 10^{-7} \text{ (m}^2\text{)}$ | A1 | | | $(3.3 \times 10^{-5} (\text{m}^2) \text{scores 2/3})$
(If $R = 6.0 \Omega$ then $A = 9.8 \times 10^{-7} (\text{m}^2)$. This scores 2/3) | [Total: 10] | | Question | Expected Answers | Marks | |----------|---|----------------------| | 6 | | | | (a) | Arrow towards the cloud | B1 | | (b) | Into the page (No ecf from (a)) | B1 | | (c)(i)1. | $I = \frac{\Delta Q}{\Delta t}$ (Allow other subject, with or without Δ) (charge =) 7800×0.23 1.794 × $10^3 \approx 1.8 \times 10^3$ (C) (Ignore minus sign) (1.8 × 10^6 (C) scores 2/3) | C1
C1
A1 | | (c)(i)2. | (number =) $\frac{1.79 \times 10^3}{e}$ (Possible ecf)
(number =) $1.12 \times 10^{22} \approx 1.1 \times 10^{22}$ | C1
A1 | | (c)(ii) | F = BIL
$(F =) 42 \times 10^{-6} \times 7800 \times 250$
$(F =) 81.9 \approx 82$ $(8.2 \times 10^{7} \text{ scores } 2/3)$
newton / N / TAm / Jm ⁻¹ | C1
C1
A1
B1 | | | | 1.0 | | | | | | | | | | | | ŀ | | Question | Expected Answers | Marks | |----------|--|----------------| | 7
(a) | Any <u>five</u> from: Photoelectric (effect) mentioned Photon(s) mentioned in correct context / E = hf One-to-one 'interaction' between photon & electron Surface electrons are involved Electron released / photoelectric (effect) when photon energy > / = work function (energy) Electrons emitted / photoelectric (effect) when frequency > / = threshold frequency Energy is conserved (in the 'interaction' between photon and electron) Reference to Einstein's equation: hf = φ + KE_(max) | B1 × 5 | | (b)(i)1. | [QWC: Spelling and Grammar] (energy of photon = 2.2 + 0.3) 2.5 (eV) | B1
B1 | | (b)(i)2. | (energy =) $2.5 \times 1.6 \times 10^{-19}$ (Possible ecf from (b)(i)1.) 4.0 × 10 ⁻¹⁹ (J) (Allow 1 sf answer) | C1
A1 | | (b)(ii) | $(f =) \frac{4.0 \times 10^{-19}}{h}$ (Possible ecf) $(f = \frac{4.0 \times 10^{-19}}{6.63 \times 10^{-34}})$ | C1 | | (c) | $(f =)6.03 \times 10^{-34})$ (f =)6.03 \times 10^{14} \approx 6.0 \times 10^{14} (Hz) (Allow 6 \times 10^{14}) Each photon has more energy / There are fewer photons (in | A1
B1 | | | a given time because intensity is the same) Smaller current | B1 [Total: 13] | | Question | Expected Answers | Marks | |----------|--|------------------| | 8 | Any five from: Electrons travel / move as a wave Electrons show diffraction / interference (effects) Diffraction (is noticeable) when λ comparable to 'gap' size Mention of de Broglie equation: λ = h/mv λ, h, m and v correctly identified in 4. above Graphite / matter / atoms / nuclei / small gap(s) needed to diffract electrons Experimental evidence: '(diffraction) rings' / 'fringes' (Can score on a diagram) | B1 × 5 | | | [QWC: Organisation] | B1
[Total: 6] |