| 1.a.i. | A change in direction of the motion of planets as seen from Earth | (not Mercury, Venus) | 1
1 | |--------|--|------------------------|-------------| | ii. | any two from the following:
all solar objects orbit the Earth
planets should not change direction | (disallow: elliptical) | 0 | | | | | 2 max. | | b. | Sun at centre
Circular orbits | | 1 | | C. | Planets orbit Sun with different speeds. Overtaking of planets | | 1
1 | | d. | any 2 from the following;
inferior predictions to Ptolemaic model
stellar parallax not observed
Earth not felt to be moving
No 'wind'
direction of free falling objects would not be vertical | | 2 max. | | 2.a. | Nuclear fusion or p – p reactions Mass to energy conversion/ E = mc² Hydrogen converted to helium | | 1
1
1 | | b.i. | x-axis: temperature/ colour index/ spectral class correct direction: T to left; B \leftarrow R; O - M to right | | 1 | | | y-axis: absolute magnitude/luminosity correct direction; M down; L up | | 1 | | b.ii. | On main sequence, in lower half | | 1 | | c.i. | expansion decrease in temperature/ redder in colour | | 1 | | c.ii. | Hydrogen depletion in core
Helium /carbon burning | | 1 | | d. | A: burns fuel quickly so very short lived
B: intensity of radiation is low | | 1 | | 5.a. | any 6 points from: initial singularity high temperature emergence of weak/strong/electrostatic force matter-antimatter imbalance pair-production from radiation/matter-radiation interchange formation of protons/hydrogen nuclei/quarks/leptons/electrons/neu early stage helium nuclei formed universe cools recombination of electrons and protons | ıtrinos | | | |------|--|-------------|--|--| | | 6 max: | 6 | | | | b. | open when Ω < 1 / ρ < ρ_0 universe expands for all time | 1
1 | | | | | flat when Ω = 1 / ρ = ρ_0 universe just expands for all time (owtte) special case if M1 mark not scored: | 1
1 | | | | | closed when $\ \Omega >$ 1 / $\rho > \rho_0$ expansion eventually halts/ universe collapses/big crunch | 1
1 | | | | C. | dark matter/hydrogen gas /helium gas affects motion of galaxies/ | 1
1 | | | | 6.a. | accept any suitable arrangement. accelerating spacecraft with front and rear light clocks pulse from front clock arrives before pulse from rear clock rear clock appears to run slower than front clock to observer in cra gravity equivalent to acceleration clocks must run slower in gravitational field | | | | | | Any 5 | | | | | b.i. | E = $14.4 \times 10^{3} \times 1.6 \times 10^{-19} \text{ J } (= 2.3 \times 10^{-15} \text{ J})$
E = hf
f = $2.3 \times 10^{-15} / 6.64 \times 10^{-34} = 3.5 \times 10^{18} \text{ Hz}$ | 1
1
1 | | | | b.ii | $\Delta f / f = -(9.81 \times 22 / 9 \times 10^{16}) = -2.4 \times 10^{-15}$
$\Delta f = 2.4 \times 10^{-15} \times 3.5 \times 10^{18} = 8.4 \text{ kHz}$
(using $f = 4.0 \times 10^{18}$ gives $\Delta f = 9.6 \text{kHz}$) | 1 | | | | C. | GPS satellites/ light from object falling into black hole/ light from large/dense star /synchronising atomic clocks in aircraft/satellites | | | | | 7 (a) (i) | Mass | $= 0.15 \times 5 \times 60$ | 1 | |-----------|--|--|--------| | | | = 45 kg | 1 | | (ii) | Energy required | = 45 × 4200 × (38 – 8) | 1 | | | | Must have temperature difference = 5.67 × 10 ⁶ J | 1 | | (b) (i) | Work done | = Force × distance turned (Allow F.d) | 1 | | | | $= 80 \times 2 \pi \times 0.2$ | 1 | | | | = 100 J | | | (ii) | Power produced | = Energy per rev. × Number of rev. per second | | | | | = 100 × 1.3 | | | | • | = 130 W | 1 | | (iii) | Total number of revolutions | $= 5.67 \times 10^6 / 100$ | | | . , | Total Humber of Tevolutions | = 56700 | 1 | | (iv) | Time for pedalling | = 56700 / 1.3 | | | | Time for pedaming | = 43615 secs | 1 | | | · | = 12.1 hours | 1 | | | | - 12.1 Hours | | | c (i) | Total resistance in heater circ
Must see some evidence of e
than $V = IR eg R_{total} = R_1 + R$ | quation used and physics of problem other | 1 | | | than v = ii eg i total = i i i i | = 24/5 | | | | | = 4.8Ω | 1 | | | Resistance of element | = 4.8 – 1.2 | 1 | | | | = 3.6 Ω | | | (ii) | Length or wire | = RA / ρ | 1 | | | | $= 3.6 \times 0.32 \times 10^{-6} / 1.5 \times 10^{-7}$ | 1 | | d | Discussion on energy losses | = 7.68 m
Work done against friction in bearings etc | 1
1 | | | | Power loss from resistance of generator and connecting wires | 1 | | | | Heat radiated from tank | 1 | In one second student outputs 130 J of which only 120 J to generator and only 90J to tank Thus pedalling time will be longer by factor 130 / 90 giving a new time of 17.5 hours. 2 (Any explained energy loss plus extra time calculations scores up to 2 marks) (Any correct calculation of extra time scores 1 mark) Maximum 4 marks for question Up to 3 marks for intelligent discussion (but ignore sound) Up to 2 marks for calculation Max 4