Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2825/04

June 2004

Question	Expected Answers	Marks	
1 (a)	number of nucleons (in nucleus) / nucleon number / number of neutrons and protons / mass number NOT atomic number	1	[1]
(b)	one axis labelled, curved in correct sense and passes through origin; curve continues with positive gradient; (mark lost if line becomes horizontal or negative gradient) allow graph of r vs $A^{1/3}$ straight line through origin for 2/2 unlabelled / wrong axes gets $0/2$	1	[2]
(c)(i)	cubes both sides of equation to get $r^3 = r_0^3 A$; multiplies both sides by $4\pi/3$; allow reverse argument: divides by $4\pi/3$ then takes cube root	1	[2]
(II)	volume of nucleus volume of a nucleon / proton / neutron / hydrogen nucleus	1	[2]
(d)	$m = A m_0$ or $m = A m_0$ - mass defect or equivalent	1	[1]
(e)	density of nucleus <i>independent</i> of A; (1) because mass and volume both increase by same factor / A or writes expression for density of each, so it is clear that A cancels; (1) spacing (of nucleons) always the same; allow comment: density of many-nucleon nucleus < density of single neutron/proton/nucleon (because spherical nucleons have spaces between); . (1)	1	
	any 2	2	[3] 11
2(a)	either decay: means loss of / alpha, beta particles/ electrons from nucleus / gamma radiation; fission: means splitting of nucleus into two (roughly equal) parts / nuclei; or decay is spontaneous (1) but fission is neutron-induced (1)	1	[2]
	NOT natural or random		
(b)	$^{238}_{92}U + ^{1}_{0}n -> ^{239}_{92}U$	1	[1]
(c)	$^{239}_{92}U \rightarrow ^{239}_{93}Np + ^{0}_{-1}e + v-bar/v$	1	
	$^{239}_{93}$ Np -> $^{239}_{94}$ Pu + $^{0}_{-1}$ e + v-bar / v if neutrino missing, 1/2 max. allow β for e in both for 1/2 max.	1	[2]

Final Mark Scheme Downloaded from http://www.thepaperbank.co.uk

(d)(l)	alpha (particles) / α / ⁴ ₂ He / helium nucleus;	1 [1]
(ii)	$\lambda = 0.693 / t_{\frac{1}{2}}$ $\lambda = 0.693 / (24100 \times 365 \times 24 \times 3600)$ $(= 9.1(2) \times 10^{-13} \text{ s}^{-1})$ subs.	1 1 1 [2]
(iii)	$A = \lambda N$ $N = (0.25/0.239) \times 6.02 \times 10^{23}$ (= 6.3×10^{23}) or $0.25/(1.67 \times 10^{-27} \times 239)$ so $A = 9.1(2) \times 10^{-13} \times 6.30 \times 10^{23}$ both subs. = $5.7(4) \times 10^{11}$ Bq ans. + unit: Bq or s ⁻¹	1 1 1+ 1 [4]
3(a)	reaction: ${}^{2}_{1}H / {}^{2}_{1}D + {}^{3}_{1}H / {}^{3}_{1}T \rightarrow {}^{4}_{2}He + {}^{1}_{0}n \ (+ energy);$ raise temperature (of gases) / high temperature / gives example, not less than 10^{6} K / hot; (gas) becomes plasma / electrons stripped from nuclei; plasma confined by magnetic field / 'bottle'; (materials contained in) toroidal / doughnut-shaped vessel / Tokamak; (1) how: ohmic heating (or AW) / large current causes heating; (1) plasma forms 1-turn transformer secondary coil / low turns ratio; (1) neutral beam injection heating; (1) radio frequency / RF heating; (1) self-heating by alpha particles; (1)	1 1 1 1
	detail: eg ions spiral along <i>B</i> lines; (1) high density (of plasma); (1) energy / k.e. / fast enough to overcome Coulomb barrier (1) any 2	2 [6]
(b)	nuclear equation: either ${}^{1}_{0}$ n + ${}^{6}_{3}$ Li -> ${}^{3}_{1}$ H + ${}^{4}_{2}$ He or ${}^{1}_{0}$ n + ${}^{7}_{3}$ Li -> ${}^{3}_{1}$ H + ${}^{4}_{2}$ He + ${}^{1}_{0}$ n (1) lithium layer surrounds reactor vessel, or simply lithium 'blanket'; (1) ('lithium' alone does not score) neutron k.e./ energy transferred to lithium causes heating; (1) circulate coolant through lithium / blanket; (1) any 2 (coolant) heats water and converts it to steam which drives turbines and	2
	turns (electrical) generators ;	1 [3]
(c)	little / not much / no radioactive waste / short half life; (1) small volume / amount of waste; (1) no greenhouse gas emission / no CO ₂ emission / acid rain; (1) (almost) unlimited stocks of raw materials (Li) / fuel / deuterium; (1) no chance of runaway / meltdown; (1) energy per unit mass of fuel is greater; (1) any 2	2 [2]
4(a)	gravitational pressure / gravitational confinement / gravity pulls material inwards; describes plasma state: mixture of electrons and nuclei / becomes a plasma because electrons stripped from nuclei;	1 1

	high density / particles close together /high collision rate among nuclei; (1) high temperature / hot / example not less than 10 ⁶ K; (1) (high temperature means) particles have enough energy to overcome repulsion between nuclei / Coulomb barrier; (1) much hydrogen present in Sun / refers to proton-proton reaction / 10 ⁵⁶ protons; (1)		
	any 3	3	[5]
(b)(l)	because carbon / 12 C is regenerated at end or AW;	1	[1]
(ii)	arrives at correct equation: $4^{1}_{1}H \rightarrow {}^{4}_{2}He + 2^{0}_{1}e + 2^{0}_{0}v-bar$); ${}^{12}_{6}C$ on both sides scores 1/2	2	[2]
(iii)	energy released = $4 \times 7.1 \times 10^{6} \times 1.6 \times 10^{-18}$ subs. = $4.5(4) \times 10^{-12} \text{ J}$ (omits 4 gives 1.1×10^{-12} ; omits 10^{6} gives 4.5×10^{-18} omits 1.6×10^{-19} gives $28(.4)$ any one of these $1/2$)	2	[2]
	binding energy involves ⁴ ₂ He splitting / fusing to protons and neutrons - not to protons and positrons (1) protons have initial ke (so energy release is greater) (1) electrons / positrons are generated / created, using some mass-energy (1) (k.e. of products does not score)		
	any 1	1	[1]
(c)	total power = $4.5 \times 10^{-12} \times 8 \times 10^{37}$ subs. = 3.6×10^{26} W ans. accept 4×10^{26}	1	[2]
		_	13
5(a)	$E = \frac{1}{2} m v^2$ or clear from substitution equation $20 \times 1.6 \times 10^{-19} \times 10^6 = \frac{1}{2} \times 1.67 \times 10^{-27} v^2$ so $v = 6.2 \times 10^7 \text{ (m s}^{-1)}$ ans. $6.1 \times 10^7 \text{ (ms}^{-1)}$ scores 1/2	1	[2]
(b) (i)	correct polarity: + on inner electrode, - on outer electrode	1	[1]
(ii)	$t = 2\pi R/v$ equation = $2\pi \times 800/(6.2 \times 10^7) = 8.1 \times 10^{-5}$ (s) allow 1 s.f. ans. allow ecf from (a)	1 1	[2]
(c)(i)	B direction: out of paper / circle plus dot symbol / upwards F direction: towards centre	1	[2]
(ii)	$mv^2/R = Bqv$ 1 mark each side correct (so $R = mv/(Bq)$) $F = mv^2/R$ or $F = Bqv$ scores 1/2 assumption: magnetic field uniform / constant round whole of circular path;	2	[3]
(iii)	can use weaker magnetic field / smaller / cheaper electromagnets / no need		

Downloaded from http://www.thepaperbank.co.uk June 2004

	for superconducting electromagnets acceleration is less (for large R) so less radiation is emitted; any 1	1	[1]
(d)	antiprotons have same mass as protons / electrons have different / smaller mass; so antiprotons follow path of same radius in same field / electrons follow path of different / smaller radius / need different / smaller field;	1	[2]
6(a)1. 2.	baryon hadron; (either order) (allow nucleon)	1	13 [1]
(b)	$p^+ -> n^0 + e^+ + v$ or $^1_1p -> ^1_0n + ^0_1e + v$ equation name: (electron) neutrino	1	[2]
(c)	when inside / forming part of a (stable) nucleus	1	[1]
(d)(i)	proton: uud ; neutron: udd ;	1 1	[2]
(ii)	$p^+ \rightarrow n^0 + \pi^+$ ie cancels p^+ or cancels quarks	1	
	u u valid quark equation, eg u -> d + π ⁺ d d	1	
(iii)	π ⁺ must be (d-bar + u) π ⁺ contains d-bar <i>or</i> u scores 1	2	[4] 10

Day	vnloaded from http://w	yyw.thepaperbank.co.uk June 20	
Final Mark St	neme 2000 110111 1111 21	June 20)04
7 (a) (i)	Mass	$= 0.15 \times 5 \times 60$	1
		= 45 kg	1
(II)	Energy required	= $45 \times 4200 \times (38 - 8)$ Must have temperature difference = 5.67×10^6 J	1
(b) (i)	Work done	= Force × distance turned (Allow F.d)	1
		$= 80 \times 2 \pi \times 0.2$	1
		= 100 J	
(ii)	Power produced	= Energy per rev. × Number of rev. per second	
		= 100 × 1.3	
		= 130 W	1
(iii)	Total number of revolutions	$= 5.67 \times 10^{8} / 100$	
		= 56700	1
(iv)	Time for pedalling	= 56700 / 1.3	1
		= 43615 secs	•
		= 12.1 hours	1
c (i)	Total resistance in heater circ Must see some evidence of eathan $V = IR$ eg $R_{total} = R_1 + R_2$	quation used and physics of problem other	1
		= 4.8 Ω	1
	Resistance of element	= 4.8 - 1.2	1
		= 3.6 Ω	

= RA / ρ

= 7.68 m

 $= 3.6 \times 0.32 \times 10^{-6} / 1.5 \times 10^{-7}$

1

1

(ii)

Length or wire

Downloaded from http://www.thepaperbank.co.uk Final Mark Scheme 2825/04

d Discussion on energy losses V

Work done against friction in bearings etc 1

Power loss from resistance of generator

and connecting wires

Heat radiated from tank

1

In one second student outputs 130 J of which only 120 J to generator and only 90J to tank

Thus pedalling time will be longer by factor 130 / 90 giving a new time of 17.5 hours. 2

(Any explained energy loss plus extra time calculations scores up to 2 marks) (Any correct calculation of extra time scores 1 mark)

Maximum 4 marks for question

Up to 3 marks for intelligent discussion (but ignore sound)

Up to 2 marks for calculation

Max 4

Downloaded from http://www.thepaperbank.co.uk