2822: Electrons and photons

	Flow / movement of charge / charged particle(s) AW	B1	
(b)	(Allow current = rate of flow of charge / current = rate of charge of charge) The charge (flowing past a point) in 1 s when current is 1 A	B1	
	$(Allow 1C = 1A \times 1s)$		
(c)(i)	$I = \frac{\Delta Q}{\Delta t}$ / $I = \frac{340}{50}$ (Allow any subject - with or without Δ)	C1	
	6.8 (A)	A 1	
(c)(ii)1. There is <u>magnetic</u> field (around the current-carrying strip(s) and hence a force) AW B1			
2.	(Fleming's) left-hand rule	B1	
3.	Towards A / To the left (Allow direction given on Fig.1.1)	B1 [Total : 7]	
2			
(a)	current \propto voltage / p.d. (for a metal conductor) [Allow $I \propto V$ because of (b)] as long as temperature remains constant / all physical conditions remain the same ($V = IR$ and $R = $ constant scores 1/2) ($V = IR$ scores 0/2)	M1 A1	
(b)(i)	(Semiconductor) diode	B1	
(b)(ii)	Any <u>five</u> from: Resistance is given by $R = V/I$ (Allow the use of R for resistance in this question) The resistance is not constant / Diode is a non-ohmic (component)	B1 × 5	
	For <u>negative</u> value(s) (of V) resistance is infinite / (very) large For V / value(s) less than 0.6 (V) the resistance is infinite / (very) large For V / value(s) greater than 0.6 (V) the resistance is small / less (Allow a calculation (Accept 0.62 V)		
	For V / value(s) greater than 0.6 (V) the resistance decreases (as V increases) (Also scores mark above) Resistance correctly calculated at one point (Assume values are in ohms if unit is not given) Resistance correctly calculated at another point		
	(Allow 'voltage increases the resistance decreases' if there is no reference to 0.6 V and the se above is not scored)	cond mark	
	QWC 'Spelling and grammar'	B1 [Total : 9]	
	sum of current(s) into a point / junction = sum of current(s) out (from the point / junction) (-1 for omission of 'point' or 'sum' in the statement of the law) (Algebraic sum of current(s) at a point = 0 scores 2/2)	B2	
(b)(i)	Thermistor	B1	
	$I_1 = 51 \text{ (mA)}$ $I_2 = 9 \text{ (mA)}$ $I_3 = 29 \text{ (mA)}$	B1 B1 B1 [Total : 6]	

4
(a) $R = R_1 + R_2 / R = 200 + 120 / R = 320$ current $= \frac{8.0}{320}$ current $= 2.5 \times 10^{-2} \text{ (A)}$ (b) $V = 25 \times 10^{-3} \times 120 / V = \frac{120}{120 + 200} \times 8.0$ V = 3.0 (V) (Possible ecf)

(c) p.d. across the 360 (Ω) resistor = p.d. across the 120 (Ω) resistor /
There is no current between **A** and **B** / in the voltmeter

(Allow 'A & B have same voltage' - BOD)

The p.d. calculated across 360 Ω resistor is shown to be 3.0 V / The ratio of the resistances of the resistors is shown to be the same.

B1 [Total : 5]

C1

C1

A₀

B1

5

(a) Correct field direction
Correct field pattern (minimum of three lines)

B1

(b)(i) length = $2\pi \times 2.8 \times 10^{-2} \times 20$ / length = $2\pi \times 2.8 \times 20$ M1 length = 3.52 (m) ≈ 3.5 (m) / length ≈ 350 (cm)

(b)(ii) $R = \frac{\rho L}{A}$ (Allow any subject) C1 $R = \frac{4.9 \times 10^{-7} \times 3.5}{8.4 \times 10^{-7}}$ C1 $R = 2.04 \approx 2.0 \, (\Omega)$ ($R = 2.05 \approx 2.1 \, \Omega \text{ if } 3.52 \, \text{m is used}$) A1

(c)(i) $V = 6.0 \times 2.04$ (Possible ecf) (Allow initial current 5.7 A to 6.0 A) C1 $V = 12.2 \approx 12$ (V) (Allow $V = 2.0 \times 2.04 \approx 4.1$ (V) 1 mark) A1

(c)(ii) P = VI (Allow $P = I^2R$ or $P = V^2/R$) C1 $P = 12 \times 6.0$ (Possible ecf) P = 72 A1 watt / W / J s⁻¹ / VA

(c)(iii) Any <u>four</u> from:

The temperature of the coil increases / the coil gets 'hotter' (Allow 'coil heats up')

The resistance / resistivity of coil increases (as its temperature increases)

The decrease in current is linked to I = V/R

More / frequent collisions of electrons and (vibrating) atoms / ions (as temperature / resistance increases)

The coil (eventually) reaches steady temperature / constant (higher) resistance

QWC 'Organisation'

B1 [Total: 16]

 $B1 \times 4$

January 2004

6

- (a) particle(-like) / particulate (nature) / photon ('behaviour') B1
- (b)(i) A 'packet' of energy / radiation / A quantum of (EM) radiation / energy / light B1 (Do not allow 'particle of light')
- (b)(ii) The minimum frequency (of the EM radiation) for emission of electrons / photoelectric effect

 B1
- (c)(i) Visible (light)

(c)(ii) work function = $1.9 \times 1.6 \times 10^{-19}$ M1

(c)(ii) work function = $1.9 \times 1.6 \times 10^{-19}$ M1 work function = 3.04×10^{-19} (J) $\approx 3.0 \times 10^{-19}$ (J)

(c)(iii)1. $E = hf / E = \frac{hc}{\lambda}$

$$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{5.1 \times 10^{-7}}$$

$$E = 3.9 \times 10^{-19} \text{ (J)}$$
A1

2. $hf = \phi + KE_{(max)}$ / $hf = \phi + \frac{1}{2} mv^2$ (Allow $E = \phi + \frac{1}{2} mv^2$ if E is qualified in (c)(iii)1.) C1 3.9 × 10⁻¹⁹ = 3.0 × 10⁻¹⁹ + KE_(max) / 3.9 × 10⁻¹⁹ = 3.04 × 10⁻¹⁹ + KE_(max) C1 KE = 9.0 × 10⁻²⁰ (J) / KE = 8.6 × 10⁻²⁰ (J) (Possible ecf) A1

- (c)(iv) No change (to maximum KE of electron)

 Each photon has same energy (but there are fewer photons)

 B1
- (c)(v) number of photons = $\frac{80 \times 10^{-3}}{3.9 \times 10^{-19}}$ ($\approx 2.05 \times 10^{17}$) (Possible ecf)

number of electrons = $0.07 \times \frac{80 \times 10^{-3}}{3.9 \times 10^{-19}}$ number of electrons = 1.44×10^{16} (s⁻¹) $\approx 1.4 \times 10^{16}$ (s⁻¹)

(d)
$$\lambda = \frac{h}{mv}$$
 (Allow any subject)

 $5.1 \times 10^{-7} = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times v}$ $v = 1.43 \times 10^{3} \approx 1.4 \times 10^{3} \text{ (ms}^{-1)}$

 $v = 1.43 \times 10^{3} \approx 1.4 \times 10^{3} \text{ (ms}^{-1)}$ [Total: 17]