Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2825/4

January 2004

Downloaded from http://www.thepaperbank.co.uk Final Mark Scheme 2825/04 January 2004

Question	Expected Answers		Marks	
1 (a)	strong /force interaction is zero		1	[1]
(b)	$F_{\rm E} = Q_1 Q_2 / (4\pi \varepsilon_0 r^2) ;$ = $(1.6 \times 10^{-19})^2 / [4\pi \times 8.85 \times 10^{-12} \times (0.82 \times 10^{-15})^2] ;$ = $3.4 \times 10^2 \rm N$;	ans.	1 1 1	[3]
(c)(i)	indicates slightly larger separation; explanation: protons repel; because they have like charges; hence strong force is attractive; relates to graph eg below axis, F is attractive;	(1) (1) (1) (1) any 3	1	[4]
(ii)	(approx.) 3.4 x 10 ² N; reason: because strong force must balance electrostation	•.	1 1	[2]

3(a)(i)	$E_{\rm k} = 2.1 \times 10^{-23} \times 3 \times 10^8 n = 6.3 \times 10^{-15} n \text{J}$ so ke of one particle = $6.3 \times 10^{-15} \text{J}$	1	[1]
(ii)	(no) idea of random motion / spread of velocities / energies / this value is only an average value	1	[1]
(b)(i)	nuclei both have same (kind of) / positive charge ; so they repel	1	[2]
(ii)	graph: negative gradient throughout; curved correctly and reaches zero;	1	[2]
(iii)	adds ke's; ke is <u>all</u> converted to pe / states law of energy / states no extra work done;	1 1	[2]
(iv)	$r = Q_1 Q_2 / (4\pi \varepsilon_0 E_P) = (1.6 \times 10^{-19})^2 / (4\pi 8.85 \times 10^{-12} \times 1.3 \times 10^{-14})$; subs. = 1.8 x 10 ⁻¹⁴ m; subs.	1 1	[2]
(c)	${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n (+energy)$	1	[1]

4(a)	two dees: correct shape and position (need not be labelled); connected to an <u>alternating supply</u> - clear on sketch or labelled; magnetic field at right angles to sketch / stated in account; proton accelerated by <i>E</i> field between dees / attracted / repelled by negatively / positively charged dee; polarity of dees changes every time particle emerges from a dee /	
	crosses the gap; magnetic force on proton, perpendicular to motion; acts as centripetal force / has no component along direction of motion; hence (proton has) constant speed inside dee; spiral track consistent with B direction (1) any 3	3
(b) (i)	$T=s/v$ $=\pi R/(BQR/m) = \pi m/(BQ) or 2\pi R/(BQR/m) = 2\pi m/(BQ)$ $f = 1/2T f = 1/T (=BQ/(2\pi m)) (=BQ/(2\pi m))$ algebra	1 1 1
(ii)	$f = 1.2 \times 1.6 \times 10^{-19} / (2\pi \times 1.67 \times 10^{-27}) = 1.8(3) \times 10^7 \text{ Hz}$ ans.	
(c)	or Q /m is constant / Q and m are both constant;	1

5(a)(i)	every particle has (corresponding) antiparticle; (1) particle and antiparticle have opposite charges but sams mass; (1) matter and antimatter annihilate one another (when they collide); (1)		
	any 2	2	[2]
(ii)	positron e ⁺ or β ⁺ or ⁰ ₁ e or ⁰ ₁ β	1	[1]
(b)(i)	$e' + e^* = 2\gamma$;	1	.[1]
(ii)	$E = mc^2$; = 2 x 9.11 x 10 ⁻³¹ x (3 x 10 ⁸) ² (= 1.64 x 10 ⁻¹³ J)	1	•
	E = 2hf; $f = 1.64 \times 10^{-13} / (2 \times 6.63 \times 10^{-34}) = 1.24 \times 10^{20} \text{ Hz}$; ans.	1	[3]
(c)(i)	final energy = 2 + 5 x 3 = 17 MeV ans; (allow 2 + 3 + 5 x 3 = 20)	1	
	explanation: electron gains 3 MeV (of energy) between one cylinder / electrode and the next (and 3.0 MeV on entering first cylinder);	1	[2]
(ii)	sketch: two arrows, same length at equal angles, <90°, to forward direction (can be both along line of action);	1	
	explanation: resultant mtm. must be along direction / path of original electron (or AW);	1	[2]
(iii)	electron accelerates / speed increases ; (electron) spends equal time in each electrode;	1	[2]

6(a)	proton numbers correct Se 34: Br 35: Kr 36 neutron numbers correct Se 45: Br 44: Kr 43 -1 any error	1
(b)	 β' / electron (and (electron) antineutrino) β' / positron (and (electron) neutrino) and 2 answers reversed gets 1/2 	1 1
(c)(i)	$^{79}_{37}\text{Rb} \rightarrow ^{79}_{36}\text{Kr} + ^{0}_{1}\text{e} + ^{(0)}_{(0)}\upsilon$	2
	β^+ or e^+ gets 1/2 only omits ν , 1/2 only	
(ii)	weak force / interaction	1
(iii)	78.9240 - 78.9201 = 0.0039 u allow 0.0039 - positron mass = 0.00335u	1
(iv)	energy = $m c^2$	1
	= $0.0039 \times 1.66 \times 10^{-27} \times (3.0 \times 10^8)^2$ = $5.8(3) \times 10^{-13} \text{ J}$	1 1
	(or. $E = 0.0039 \times 931 \text{ MeV} (= 3.63) = 3.63 \times 1.6 \times 10^{-13} \text{ J} = 5.8 \times 10^{-13} \text{ J}$)	
(v)	most taken by neutrino / beta particle; because these particle(s) much less massive / because of application of . mtm. law;	1

Final Mark Scheme loaded from http://www.thepaperbank.co.uk January 2004

7(a)(i)	Idea of zig-zag path		1	
	3-5 reflections, i = r, reflection at boundary	Any 3	1	
	Refractive index of light guide > air (allow denser) Provided <i>i</i> ≥ C, TIR occurs.		1	[3]
(ii)	$\sin C = 1/n$		1	
	$C = \sin^{-1}(1/1.58) = 39.3^{\circ}.$		1	[2]
(b)(i)	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3 \times 10^{8}/413 \times 10^{-9}$	Photon energy	1	
	$= 4.82 \times 10^{-19} / 1.6 \times 10^{-19} = 3.01 \text{ eV}$	eV conversion	1	[2]
(ii)	10 ⁴ photons = 3.01 x10 ⁴ eV		1	' 03
	% conversion =3.02x10 ⁴ x100%/1.5x10 ⁶ = 2%	<u></u>	1	[2]
(c)(i)	$hc/\lambda = 2.2 \times 1.6 \times 10^{-19}$		1	
	$\lambda = 6.63 \times 10^{-34} \times 3 \times 10^{8} / (2.2 \times 1.6 \times 10^{-19})$	560- 570 nm	1	[2]
	= 566 nm		'	[2]
(ii)	the work function is greater than the photon energy / no photoelectron emission	Or equivalent	1	[1]
/:::\	$hf = \phi + \frac{1}{2}m_e v_{max}^2$	Or hf = ϕ + KE	1	נין
(iii)	$hf-\phi = (3.02 - 2.2) \times 1.6 \times 10^{-19} = 1.31 \times 10^{-19} \text{J}$	Omit eV	1	•
	$V_{max} = \sqrt{(2\times1.31\times10^{-19}/9.1\times10^{-31})} = (5.0-5.4)\times10^{5} \text{ ms}^{-1}$	conversion: 2/3	1	[3]
	V _{max} = \(\(\(\) \(KE = 3eV or		1-1
		2.2eV: 1/3		
(d)(i)	312	Allow 3 ¹³ =	1	
	= 531000	1590000	1	[2]
(ii)	$Q = ne = 531000 \times 1.6 \times 10^{-19} = 8.5 \times 10^{-14} C$		1	
	$I = Q/t = 8.5 \times 10^{-14} / 3 \times 10^{-9}$		1	
	= 2.8 x10 ⁻⁵ A	Q=e: 1/3	1	[3]