Downloaded from http://www.thepaperbank.co.uk

AZ MATERIALS

Mark Scheme 2825/3 January 2004

[1]

photon energy / Appropriate reference to $\lambda = hc/E$.

Final Mark Scheme January 2004

6.	(a)	(i)	sin 89 = 5.0 / AP	\$	(1)	
			Difference in path length = $(AP + BP) - AB$ = $(2 \times 5 / \sin 89) - 10 = 10.00152 - 10 (= 0.00152 m)$	m) e.c.f.	(1)	[2]
		(ii)	Difference in path length = $(0.00152 / 1000) \times 100 \times 100$	1000 = 0 152 m	(1)	
		(,	Time difference = $0.152/2.1 \times 10^8$		(1)	
			$= 7.25 \times 10^{-10} \text{ s}$		(1)	[3]
	/L\	/:\	Chang distarted because transit time of new visits with	,		
	(b)	(i)	Shape distorted because transit time of rays varies with Height of pulse / amount of light transmitted reduced by	n path followed. /: absorption of photon	(1) s(1)	
				Rayleigh scattering.	(1)	
			Reduce distortion by: using fibre of smaller diameter using graded index fibre.		(1) (1)	
			Using infra-red:			
			Pulse distortion is reduced:		(1)	
			Lower refractive index;		(1)	•
			means speed of rays in fibre is greater;		(1)	
			Time difference of paths is smaller;	*	(1)	
			Pulse height increased / amount of light transmitted inc	reased;0	(1)	
			Rayleigh scattering is less;		(1)	
			infra-red has longer wavelength than visible / Rayleigh	scattering a 1/A*.	(1) max	[8]
7	(a)	(i)	Idea of zig-zag path		(1)	
			3-5 reflections, i = r, reflection at boundary	any 3	(1)	
			Refractive index of light guide > air (allow denser)			
			Provided i ≥ C, TIR occurs.		(1)	
		(ii)	sin C = 1/n		(1)	
			$C = \sin^{-1}(1/1.58) = 39.3^{\circ}.$		(1)	
	(b)	(i)	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3 \times 10^{8}/413 \times 10^{-9}$	Photon energy	(4)	
,	(-)	(')	$= 4.82 \times 10^{-19}/1.6 \times 10^{-19} = 3.01 \text{ eV}$	Photon energy eV conversion	(1) (1)	
				CV CONVENSION	(1)	
		(ii)	10^4 photons = 3.01 x10 ⁴ eV		(1)	•
			% conversion = $3.02 \times 10^4 \times 100\% / 1.5 \times 10^6 = 2\%$		(1)	
	(0)	/i)	$hc/\lambda = 2.2 \times 1.6 \times 10^{-19}$		445	
	(c)	(i)	$\lambda = 6.63 \times 10^{-34} \times 3 \times 10^{8} / (2.2 \times 1.6 \times 10^{-19})$		(1)	
			= 566 nm	560- 570 nm	(1)	
				300- 370 Hill	(1)	
•		(ii)	the work function is greater than the photon energy /			
			no photoelectron emission	Or equivalent	(1)	
		ζ::: \	h6 = 1 :1/			
•		(iii)	$hf = \phi + \frac{1}{2}m_e v max^2$	Or $hf = \phi + KE$	(1)	
			$hf-\phi = (3.02 - 2.2) \times 1.6 \times 10^{-19} = 1.31 \times 10^{-19} J$	Omit eV	(1)	
			$v_{\text{max}} = \sqrt{(2x1.31x10^{-19}/9.1x10^{-31})} = (5.0 - 5.4)x10^5 \text{ ms}^{-1}$	conversion: 2/3	(1)	
				KE = 3eV or 2.2eV: 1	13	
	(d)	(i)	312		(1)	
			= 531000	Allow 3 ¹³ = 1590000	(1)	•
	•	,			• /	
			Q = ne = $531000 \times 1.6 \times 10^{-19} = 8.5 \times 10^{-14} \text{ C}$		(1)	
			$I = Q/t = 8.5 \times 10^{-14} / 3 \times 10^{-9}$	0	(1)	
			$= 2.8 \times 10^{-5} A$	Q = e: 1/3	(1)	

Final Mark Scheme

2825/03

January 2004

4.	(a)		Temperature below which the material has zero resistance.		
	(b)		Easier to attain temperature of 100 K (than 10 K); Easier to maintain temperature of 100 K (than 10 K); Liquid nitrogen cheaper than liquid helium;	(1) (1) (1)	
			Greater possibility of everyday applications with 100 K.		max
,	(c)		Super conducting materials used to make the coils of an electromagnet; Very high current can flow in such coils; without loss of energy as heat; Very strong magnetic field produced.	(1) (1) (1) (1)	
			Electromagnet made with superconductor can be much smaller than conventional electromagnet producing the same field strength.	(1)	
			No need for iron core so sample can be inside coil.	(1)	
			No need for equipment to remove excess heat means lower capital cost; Longer running times possible as heat does not build up.	(1) (1)	max
5.	(a)		Domains magnetised in the direction of the magnetising field grow; the others shrink.	(1) (1)	
	*" _I	;	2 Dipoles within the domains; rotate to line up with the megnetising field.	(1)	
				(1)	
	(b)	(i)	1 Power input = 0.025 x 12 = 0.30 W		
	٠.	· ·	2 Power output = I^2R = 0.110 ² x 20 = 0.242 W	(1) (1)	
			3 Efficiency = (output power/ input power) x 100 = 0.242/0.30 x 100 = 80.7 % (e.c.f)	(1) (1)	ę.
		(ii)	New efficiency = $(0.105^2 \times 20 / 0.30) \times 100$ = 73.5 % (e.c.f.)	(1) (1)	1
	(c)	(i)	Heat is produced in the transformer core EITHER	(1)	,
			due to induced / eddy currents flowing in the core caused by electromagnetic induction; OR	(1) (1)	
٧			due to hysteresis losses as the iron is taken (repeatedly) round its cycle. OR	(1) (1)	
			domains grow or rotate requiring energy to realign atoms	(1) (1)	ţ.
		(ii)	Higher frequency causes greater rate of change of flux (linkage) causing larger induced / eddy currents; OR	(1) (1)	
			Higher frequency means more circulations of the hysteresis loop per second with the same heat produced in each cycle. OR	(1) (1)	
2			rotation / growth happens more frequently with the same energy required per cycle.	(1) (1)	[: