			Total		13
	(d)		$F = (1/4\pi\epsilon_0) \ Q_1Q_2/r^2; \ Q_1 = 1 \ (e), \ Q_2 = 97 \ (e);$ correct substitution of figures giving F = 3.97 x 10 ⁻² (N) accept 0.04 N allow 79e giving 0.032 (N)	2 1 1	4
		(ii)	(average) force smaller/recoil slower/momentum less/interaction time shorter/angle of recoil different/steeper/AW allow smaller/shorter distance any 2	2	2
	(c)	(i)	m/4, v x 2 so p/2 from b(ii) or use k.e = $p^2/2m$; correct substitution with $m = m_p$ to give $p = 5 \times 10^{-20}$ (kg m s ⁻¹)	2	2
		(ii)	$mv = 6.7 \times 10^{-27} \times 1.5 \times 10^7 = 1.0(35) \times 10^{-19} \text{ (kg m s}^{-1}\text{)}$	1	1
	(b)	(i)	k.e. = $\frac{1}{2}$ mv ² (= 8 x 10 ⁻¹³) v ² = 2 x 8 x 10 ⁻¹³ /6.7 x 10 ⁻²⁷ = 2.39 x 10 ¹⁴ v = 1.5(45) x 10 ⁷ (m s ⁻¹)	1	2
		(ii)	Line passing perpendicular to the tangent at the point of closest approach to N judged by eye	1	2
2	(a)	(i)	Line in direction NA	1	
			Total		12
		(ii)	max. speed when $a = 0 / F = 5 \times 10^4 N$; giving $v = 40 \text{ (m s}^{-1})$ from fig 1.1 or by calculation	1 1	2
			$2 \times 10^{5} - 5 \times 10^{4} = 3 \times 10^{5}a;$ a = 0.5 (m s ⁻²) give max 1 mark for a = 0.67 (m s ⁻²)	1	3
	(c)	(i)	Resultant force = mass x acceleration;	1	
		(iii)	$F = 2 \times 10^6/5 = 4 \times 10^5$ (N) ecf from b(i)	1	1
		(ii)	Graph shows F is proportional to 1/v or minimum of two more calculations of P to show same value	1	1
	(b)	(i)	$P = Fv = 2 \times 10^5 \times 10$ = 2M /2 x 10 ⁶ (W) give 1 mark for 20(W)	1 1	2
1	i (a)		Work = force x distance (moved in direction of force); Power = work/time /AW Power = force x distance/time = force x velocity	1 1 1	3

3	(a)		p is the pressure, V the volume, n is the number of mole/amount of gas, R is (universal) gas constant, T is the absolute temperature /in K for one error/omission give one mark, for two give zero	2	2
	(b)	(i)	pV = $m/_M$ RT; $1.0 \times 10^5 \times 0.1 = m/_{0.03} \times 8.31 \times 300$; or show n = 4.0 mol; m = nM; m = 0.12 (kg)	2 1	3
		(ii)	V/T = constant / ρ T = constant; x = ρ_1/ρ_2 = T_2/T_1 ; = 300/500 = 0.6 [or calculate mass =0.072 kg at 500 K; using pV = m/ _M RT; ratio with b(i)	1 2 3]	3
		(iii) 1 2	molecules have more k.e. / k.e. \propto T $v \propto \sqrt{T}$ or $\sqrt[1]{2}$ mv ² \propto T; $f = \sqrt{(500/300)} = 1.29$ accept 1.3	1 2	3 11
			I Otal		••
4	(a)	(i)	acceleration ∞ displacement (from a fixed point); directed towards that point/AW	1 1	2
			for symbols without explanation max 1 mark		
		(ii)	amplitude is decreasing; follows sine wave (of decreasing amplitude)/has constant period/frequency / period/frequency independent of amplitude	1	2
	(b)		reading T = 0.67 s / 6 oscillations in 4 s / AW; f = 1/T = 1.5 (Hz) [alter f = no. oscillations/s = 1.5 (Hz) give 2 marks]	1 1	2
	(c)	(i)	5 (mm)	1	1
	(0)	(ii)	e.g 0 to 3 in 0.5 steps ecf from b	1	1
		()	-	1	
		(iii)	approx. same (or slightly lower) resonance frequency; smaller amplitude/broader peak but curves must not cross; passes through (0, 5 mm)	1	3
			Tot	al	11
5	(a) (i)	at least 3 parallel lines perpendicular to plates; arrows down	2	2
		(ii)	$V = Ed = 3 \times 10^5 \times 1.5 \times 10^3 = 450 \text{ M}/4.5 \times 10^8 \text{ (V)}$	1	1
	(b)	battery acts as the (thermal) source of energy/models wind/AW; resistor required to model slow rate of charging of cloud (to 25 s)/AW; capacitor is the plates/cloud which become(s) charged;	1 1 1 2	3 2
	(0	$\sim 1.000 - 20/25 - 0.8(\Delta)$	-		
	,,	(ii)	R = V/I; = $4.5 \times 10^8/4.0 = 110M/1.1 \times 10^8 \Omega$ ecf from c(i)	2	2
		(iii		2	2 2
		(iv	r) T = RC; = 1.1 x 4.4 = 4.95 or 5.0(s) ecf from c(ii) & (iii)	2	4
		13.5		tal	14

2824			Mark Scheme June 2	June 2003	
6	(a)		Circular; motion caused by a force in plane perpendicular to the B-field; and at right angles to the motion of the charged particle at all points/AW	, ·	
	(b)	(i)	F = mv^2/r ; = 9.1 x 10^{-31} x $10^{-16}/0.04$; = 2.3 x 10^{-13} (N)	2 2 2 1	2
		(ii)	Perpendicular to path towards centre of circle	1	1
	(c)		F = BQv; = 2.3×10^{13} ecf b(i) B = $2.3 \times 10^{-13}/1.6 \times 10^{-19} \times 10^{8}$; = $1.4(4) \times 10^{-2}$; T/tesla/Wb m ⁻²	1 3	4
	(d)		Use of E = mc^2 ; E = $2m_ec^2$ = 2 x 9.1 x 10^{31} x 9.0 x 10^{16} ;= 1.6(3) x 10^{-13} (J) allow E + k.e. of particles = 1.7(3) x 10^{-13} (J)	1 2	3
			Tota	ıl	13
7	(a)		Activity: The number of atoms/nuclei which decay/decays per second from/within the sample factors affecting activity: the decay constant/the half-life/the nature of the nuclide;	1 e 1	
			the number of undecayed nuclei present; which determines how many will decay in the next second as the probability of decay is fixed/AW	2	٠
			time factor/how old the sample is/the shorter the half-life the more decays per second/other sensible similar statements factors not affecting activity: maximum of two sensible suggestions such	1	
			as pressure, temperature, chemical reaction, etc. maximum 6 marks	2	6
	(b)		similarities: both release energy in process; (rest) mass of fragments less than original; conservation of charge/mass-energy, etc. maximum 2 marks differences:decay into two particles; fission into more particles/4 or 5; decay energy release is small compared to fission; decay cannot be initiated by any known process/random/spontaneous/ obeys laws of probability/AW; fission can be initiated by incident	1 1 1 2 2	٠.

decay energy release is small compared to fission;

decay cannot be initiated by any known process/random/spontaneous/
obeys laws of probability/AW; fission can be initiated by incident
neutron/fission rate can be varied/controlled/AW;
energies and masses in decay always the same; fission can be into
many different combinations with different energies;
most of energy in decay carried away by small particle; in fission by
massive particles/fragments;
any other sensible difference with 1 mark for description of each process
in comparison (marks must be awarded in pairs)

Quality of Written Communication (see separate sheet)

2

4

Total 16

Criteria for assessment of written communication

4 marks

- The candidate expresses ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically.
- Arguments are consistently relevant, based on sound knowledge of Physics, and are well structured.
- There are few, if any, errors in grammar, punctuation and spelling.

3 marks

- The candidate expresses moderately complex ideas clearly and reasonable fluently through well-linked sentences and paragraphs.
- Arguments are generally relevant being based on a good knowledge of physics, and are well structured.
- There are occasional errors in grammar, punctuation and spelling.

2 marks

- The candidate expresses straightforward ideas clearly and accurately, if not always fluently. Sentences and paragraphs are not always well connected.
- Arguments may sometimes stray from the point or be weakly presented.
- There are some errors in grammar, punctuation and spelling, but not to suggest a serious weakness in these areas.

1 mark

- The candidate expresses simple ideas clearly, but is imprecise and awkward in dealing with complex or subtle concepts.
- Arguments are of doubtful relevance or obscurely presented.
- Errors in grammar, punctuation and spelling and noticeable and intrusive, suggesting weaknesses in these areas.

0 marks

- Even simple ideas are not expressed clearly.
- Arguments are irrelevant or poorly stated.
- There are gross errors in grammar, punctuation and spelling.