

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

PHYSICS A 2821

Forces and Motion

Friday

6 JUNE 2003

Afternoon

1 hour

Candidates answer on the question paper.
Additional materials:
Electronic calculator
Protractor

		Candidate
Candidate Name	Centre Number	Number

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE				
Qu.	Mark			
1	6			
2	9			
3	11			
4	8			
5	9			
6	17			
TOTAL	60			

Data

speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7}~{\rm Hm^{-1}}$
permittivity of free space,	$\epsilon_0 = 8.85 \times 10^{-12} \; \mathrm{F m^{-1}}$
elementary charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{Js}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \mathrm{kg}$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

Formulae

uniformly accelerated motion,
$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$
 refractive index,
$$n = \frac{1}{\sin C}$$
 capacitors in series.
$$\frac{1}{a} = \frac{1}{a} + \frac{1}{a}$$

capacitors in series,
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

capacitors in parallel,
$$C = C_1 + C_2 + \dots$$

capacitor discharge,
$$x = x_0 e^{-t/CR}$$

pressure of an ideal gas,
$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay,
$$x = x_0 \, \mathrm{e}^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

critical density of matter in the Universe,
$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

relativity factor,
$$= \sqrt{1 - \frac{v^2}{c^2}}$$

current,
$$I = nAve$$

nuclear radius,
$$r = r_0 A^{1/3}$$

sound intensity level,
$$= 10 \lg \left(\frac{I}{I_0} \right)$$

BLANK PAGE

Answer all the questions.

1 (a) Fig. 1.1 shows a table of vector and scalar quantities.

speed, acceleration	
energy, power	
force, pressure	
velocity, displacement	

Fig. 1.1

In the blank spaces provided in Fig. 1.1, label the pair of quantities that are both vectors with a V and the pair that are both scalars with an S. [2]

(b) Fig. 1.2 shows the path taken by an athlete when she runs a 200 m race in 24 s from the start position at S to the finish at F.

Fig. 1.2

(i) Calculate the average speed of the athlete.

average speed = $m s^{-1}$ [2]
Explain how the magnitude of the average velocity of the athlete would differ from her average speed. A quantitative answer is not required.
[2]

2 Fig. 2.1 shows a boy on a sledge travelling down a slope. The boy and sledge have a total mass of 60 kg and are travelling at a constant speed. The angle of the slope to the horizontal is 35°. All the forces acting on the boy and sledge are shown on Fig. 2.1 and in a force diagram in Fig. 2.2.

Fig. 2.1

Fig. 2.2

(a) Calculate the magnitude of W, the total weight of the boy and sledge.

weight $W = \dots N [1]$

(D)	You may find it helpful to draw a vector triangle.
	roa may man morphanic araw a vocion mangio.
	resistive force $R = \dots N$ [4]
(c)	Determine the component of the weight W that acts perpendicular to the slope.
	common and of 14/
	component of $W = \dots$ N [2]
(d)	State and explain why the boy is travelling at constant speed even though he is moving down a slope.
	[2]
	[Total: 0]
	[Total: 9]

3	(a)	Define acceleration.
		[2]
	(b)	An aircraft of total mass $1.5 \times 10^5\mathrm{kg}$ accelerates, at maximum thrust from the engines, from rest along a runway for 25 s before reaching the required speed for take-off of $65\mathrm{ms^{-1}}$. Assume that the acceleration of the aircraft is constant.
		Calculate
		(i) the acceleration of the aircraft
		acceleration =ms ⁻² [3]
		(ii) the force acting on the aircraft to produce this acceleration
		force = N [2]
		(iii) the distance travelled by the aircraft in this time.
		distance =m [2]

The length of runways at some airports is less than the required distance for take-off by this aircraft calculated in (b)(iii) .
State and explain one method that could be adopted for this aircraft so that it could reach the required take-off speed on shorter runways.
[2]
[Total: 11]

4 ((a)	Define
-----	-----	--------

(i)	power
	[1
(ii)	a joule
	[1

(b) Fig. 4.1 shows part of a fairground ride with a carriage on rails.

Fig. 4.1

The carriage of mass $500\,\mathrm{kg}$ is travelling towards a slope inclined at 30° to the horizontal. The carriage has a kinetic energy of $25\,\mathrm{kJ}$ at the bottom of the slope. The carriage comes to rest after travelling up the slope to a vertical height of $3.9\,\mathrm{m}$.

(i) Show that the potential energy gained by the carriage is 19 kJ.

[2]

(ii) Calculate the work done against the resistive forces as the carriage moves up the slope.

work done = kJ [1]

		(iii)	Calculate the resistive force acting against the carriage as it moves up the slope.
			resistive force = N [3]
			[Total: 8]
5 (a)	State	e Hooke's law.
		******	[1]
(b)	Expl	ain what is meant by the spring constant.

		•••••	[2]

(c) Fig. 5.1 shows the variation of the force F with the extension x for a particular spring.

Fig. 5.1

(i) Calculate the spring constant for the spring.

spring constant = unit [3]

(ii)	Calculate the energy	stored in the	spring when a	force of	12 N is applied.
------	----------------------	---------------	---------------	----------	------------------

				energy sto	red =	••••••		J [3 _]
								[Total: 9]
6	In this question, two marks are available for the quality of written communication.							
	(a) Explain the term braking distance in relation to the motion of a road vehicle.							
		••••••			***************************************		•••••	
	•••••	••••••	••••••	•••••••		•••••		
	•••••		••••••					[1]
	Fig. 6. speed	1 shows how the when a constant I	braking di braking for	stance for ce is applie	a car of m ed.	ass 800 kg	g varies wi	th its initial
	spee	ed/ms^{-1}	0	10	20	30	40	
	brak	ing distance/m	0	6	24	54		

Fig. 6.1

(b)	Calculate the kinetic energy of the car when it is travelling	at 20 m s ⁻¹ .
-----	---	---------------------------

kinetic energy = J [3]

(C)	braking force is constant.
	[3]
(d)	Calculate the braking distance for this car when it is travelling at $40\mathrm{ms^{-1}}$ assuming the same braking force is applied.
	braking distance = m [2]

e)	Discuss in terms of the force acting on the driver of a car, how a seat belt can help to protect the driver from injury in a head on collision. Suggest briefly how air bags give additional protection to the driver.
	seat belt
ć	air bags
,	
•	
•	
•	
•	
•	
	,
••	O Fr C. M
	Quality of Written Communication [2]
	[Total: 17]