1	(a)	Any \underline{two} from: Travel through a vacuum (NOT travel through 'space', but allow 'free-space' Travel at the speed of light / 3.0×10^8 (ms ⁻¹) (in vacuum) They consist of photons Consist of oscillating electric and magnetic fields They are transverse wave / They can be polarised They can be diffracted / reflected / refracted / interfered (-1 for each contradictory statement)	
	(b)	$v = f\lambda$ / $c = f\lambda$ (Wave equation with any subject) $\lambda = 3.0 \times 10^8$ / 1.6×10^9 $\lambda = 0.188 \approx 0.19$ (m)	C1 C1 A1
	(c)	Wavelength in the range: 10 ⁻¹⁶ to 10 ⁻¹² (m) (Allow upper limit of 10 ⁻¹¹ (m) for the wavelength)	
		יון	otal 6]
2	(a)	Arrow (within the lemon and) towards the negative terminal	B1
	(b)(i)	$\Delta Q = I \Delta t$ (Allow other subject. Δ is not necessary)	C1
		charge = $1.2 \times 10^{-3} \times 6.9 \times 10^{5}$	C1
		charge = $828 \approx 830$ (C) (-1 for 10^{n} error and -1 for $t = 8$ days)	A1
	(ii)	P = VI $P = 1.32 \times 1.2 \times 10^{-3}$ (ECF for current from b(i)) $P = 1.58 \times 10^{-3} \approx 1.6 \times 10^{-3}$	C1
			A1
		unit: W / Js ⁻¹ / VA	B1
		П	otal 7]
3	(a)	$R = \frac{R_1 R_2}{R_1 + R_2} \qquad / \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} / R = \frac{180 \times 120}{180 + 120} / \frac{1}{R} = \frac{1}{120} + \frac{1}{180}$	C1
		$R = 72 (\Omega)$ (-1 for each error)	A 1
		$R_{XY} = 72 + 100 = 172 (\Omega)$ (Allow 170) (Possible ECF)	A1
	(b)	Any <u>four</u> marks from: Resistance of <u>thermistor</u> decreases as temperature increases (ora)	
	(Resistance of circuit changes with temperature scores 1 mark		B1
		The voltmeter reading / voltage stays constant / at 4.5 (V) (AW) The ammeter reading / current increases	B1
	The current is inversely proportional to the resistance of the thern		B1
		One mark for QWC (Spelling and grammar)	B1
			-4-1-07
		; [T	otal 8]

 $V=rac{R_2V_0}{R_1+R_2}$ / $rac{V_1}{V_2}=rac{R_1}{R_2}$ quoted B1 The resistance of LDR decreases as intensity of light increases (AW) B1 Correct description of how voltage/voltmeter reading changes with light intensity B1 The change in voltage / voltmeter reading is justified in terms of potential divider / ratio of resistance values / $I=V/(R_1+R_2)$ and $V=IR_2$ B1 Correct description of how the (circuit) current is affected by intensity B1

The variable resistor is used for 'sensitivity' / determining 'range' / 'calibration' / (monitor) different 'light levels'

One mark for QWC (Organisation)

B1

[Total 9]

energy of photon = work function energy $\phi = 6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 3.2 \times 10^{-7} / \phi = 6.63 \times 10^{-34} \times 9.375 \times 10^{14}$ $\phi = 6.22 \times 10^{-19} \text{ (J)} \approx 6.2 \times 10^{-19} \text{ (J)}$ $\phi = 6.22 \times 10^{-19} / 1.6 \times 10^{-19}$ $\phi = 3.88 \text{ (eV)} \approx 3.9 \text{ eV}$ Possible ECF
A1

(ii) No (photo)electrons

Photon energy is less than the work function (energy) / The frequency (of the radiation) is less than the threshold frequency / Photons heat the metal

B1

[Total 11]

8 (a) $\lambda = \frac{h}{mv}$ / $\lambda = \frac{h}{p}$ M1 $\lambda = \text{wavelength , } h = \text{Planck constant,}$ m = mass (of particle) and v = speed / velocity OR p = momentum A1

(b)(i) Neutrons have no charge / Neutrons experiences no electrical forces (ora)B1

(ii)
$$2.6 \times 10^{-10} = 6.63 \times 10^{-34} / mv$$
 / $mv = 2.55 \times 10^{-24} \text{ (kgms}^{-1)}$ C1 $v = 6.63 \times 10^{-34} / (2.6 \times 10^{-10} \times 1.7 \times 10^{-27})$ / $v = 2.55 \times 10^{-24} / 1.7 \times 10^{-27}$ C1 $v = 1.5 \times 10^{3} \text{ (ms}^{-1)}$ (Allow use of $m_n = 1.67 \times 10^{-27} \text{ kg}$) A1

[Total 6]