Qu	estion		Expected Answers	Additional guidance	Mark s
1	(a)		Sun at centre		
	(b)		Phases of Venus/Venus changes size or shape - Venus orbits Sun or not Earth Moons of Jupiter - orbit Jupiter or not Earth	Or other valid point and explanation: NOT mountains on Moon, sunspots, stars in milky way, telescope	1 1 1 1
2	(a)	(i)	When X and Y separate – max brightness Y in front of X Y behind X Different size dips due to different brightnesses	Give 1 for idea of dips correspondin g to one star passing in front of other Any 3 from 4	1 1 1
		(ii)	1 - small/big dip 2 - between dips 3 - lhs shoulder of big/small dip 4 - rhs shoulder of big/small dip	Allow any consistent solution	1 1
	(b)	(i)	-46, 121, 176, 68, -103, -178, -88, 84, 178, 107, -64, -175, -124	(-1 each error)	2
		(ii)	13 points correctly plotted to define cycle of sine wave all points must be on the lines for time, and $\pm \frac{1}{2}$ division for the vertical axis	Only one mark for 12 points	1
		(iii)	some attempt at a smooth curve Period = 12.5 ± 0.5 hour 43000 < T < 47000 s	Ecf	1
		(iv)	$v_{\text{max}} = 178 - 185 \text{ km s}^{-1}$ $a = v_{\text{max}} T / 2\pi 179 \times 10^3 \times 45000 / 2\pi$ $= 1.28 \times 10^9 \text{ m} (1.2 \times 10^9 < a < 1.4 \times 10^9)$		1 1 1
		(v)	$M = 4\pi^2 \times (1.28 \times 10^9)^3/(6.67 \times 10^{-11} \times 45000^2)$ = 6.1 x 10 ²⁹ kg 4.9 x 10 ²⁹ < M < 8.4 x 10 ²⁹	Allow ecf for a and T	1
		(vi)	(B is more massive) Because it moves more slowly.		1

3	(a)		(Obtain) spectrum		1
	()		Identify lines due to different elements		1
			Alternative response: Allow full credit for		
			argument that 1 st generation stars contain only		
	ļ		H/He, subsequent generations contain heavier		
			elements		
	(b)	(i)	Change in position/apparent motion		1
		` '	when viewpoint is changed		1
	 	(ii)	Distance at which the radius of the Earth's orbit		1
		` ′	subtends an angle of 1 arcsec		1
	(c)		$m - M = 5 \lg(d/10)$ $d = 4.3 \times 10^{17}/3 \times 10^{16} = 14.3 \text{ pc}$		1
	\'-'		$d = 4.3 \times 10^{17}/3 \times 10^{16} = 14.3 \text{ pc}$		1
			$M = 0.1 - 5 \lg(14.3/10) = -0.68$		1
			-0.47 < M < -0.68 (from allowed range of m → pc		
			conversion)		
4	(a)		MS - diagonal top left to lower right		1
•	(-,		Red giants - above MS		1
			White dwarfs - below MS		1
		į	Sun - in lower half of MS		1
			Track - MS→ red giant		1
	(b)		low mass star (< 3 M _o)		1
	(6)		Red giant		1
	1		Planetary nebula or description		1
		ł	Mass of remnant < Chandrasekhar limit		
			OR too small to form neutron star OR Fermi		1
			pressure		
5	(a)	1	description of CMB (~3 K, blackbody, uniform,		1
_	` ′		isotropic)		
			universe much hotter in the past/has cooled		1
			Linkle levyleynending universelgelevy rodshift	Or valid	
			Hubble law/expanding universe/galaxy redshift	alternative	
		1	beginning in finite past/implies cooling	alternative	
			OR		1
			Helium abundance		1
		-	He formed in hot BB	Or other	1
	(b)	(i)	Collapse	detail eg	1
			→ explosion	neutron star	•
				or Black hole	
				formation	
		(ii)	Universe contains insufficient mass to halt	Density <	1
		(")	expansion,	critical	1
			Expansion continues forever	density	'
		/:::X	Increase	301.0.0	1
		(iii)	IIICICASE		<u> L'</u>

6	(a)	(i)	The same for all observers/unchanging		1
		(ii)	Laws of physics same/invariant for all (inertial) observers/frames of reference		1
	(b)		 Observer A at rest at midpoint of tunnel Observer B on train moving (at const velocity) Train same length as tunnel according to stationary observer A (who sees lights flash simultaneously) Train longer than tunnel according to observer B on train (who sees flashes at different times) Explanation of what length contraction is Any other valid point eg symmetry, c is constant, explanation of how lights come on 	Any 5 Allow argument based on time dilation	5
	(c)		$\gamma = 1/\sqrt{(1-v^2/c^2)} = 1.67$ or $\sqrt{(1-v^2/c^2)} = 0.6$ $I = I_0/\gamma$ or equivalent = 20.0/1.67 = 12.0 m		1 1 1
7	(a)	(i)	Reluctance to change motion (as in $F = ma$) m = F/a	Link to inertia	1
		(ii)	Source of the gravitational field m = W/g	Link to gravity	1
	(b)		Drop a particle of mass m through a height h so its total energy increases by mgh . Convert mass to a photon and send back to start point. $mc^2 = hf$ Convert photon back to a particle of mass $m' > m!$ Perpetual motion?	allow valid alternatives NOT: Twins paradox,	1 1 1
			Frequency <i>f</i> of photon must have decreased as it moved up through the gravitational field - the photon's 'clock' is going slower. OR	airborne atomic clocks	1
			 Observer in accelerating spacecraft with front and rear clocks Each pulse from front clock arrives before pulse from rear clock 	5 from 6	1
			 Rear clock appears to be slower than front clock gravity equivalent to acceleration (=EP) so clocks run slower in gravity fields 		1
	(c)		Stronger gravity at Greenwich will cause more gravitational time dilation that at Boulder. OR cause it to run more slowly		1

			Outleton	Or other	2
8	(a)		Quieter	valid point,	_
			Less pollution/more environmentally friendly	eg petrol	
ĺ	•			supplies	
					. 1
				finite,	
				safety(batteri	
				es less of fire	
]			hazard), can	
1				utilise	
				renewable	
				energy	
	(b)		P = VI	0/3 for wrong	1
			750 Wh = 750/12	ans no	1
			= 62.5 Ah	working	1
1				0.75/12=0.06	
	İ			25 (2/3)	
				3/3 for	
1				correct ans.	
	(c)	(i)	No. of batteries = 960/16 = 60	-1 for each	1
	``	`	No of kWh = $0.75 \times 60 = 45 \text{ kWh}$	error	1
		ļ	= 45 x 1000 x 3600 =162 MJ	1.62 x 10 ⁸	1
				MJ (2/3)	
		(ii)	Work done = Fd	Allow 1sf if	1
		` `	$D = 162 \times 10^6/300$	working	1
			= 540 km	shown	1
	(d)	(i)	Mass of petrol = 162/50 kg	Ecf	1
1	` '	` `	= 3.24 kg		1
			Volume = m/ρ (stated or implied)	Or equivalent	1
			$=3.24/700 = 4.6 \times 10^{-3} \text{ m}^3$		1
	†	(ii)	Energy lost/not 100% efficient	General	1
		,,	As heat etc.	comment	1
				+ detail	
	(e)		Compare :-	Any 3 from 4	
	`		• mass,		
			• size,		
			 likely performance of petrol vs batteries, 		
1			sensible statement about range		
			Concluding comment		
			Considering comment		3