

Mark Scheme 2826/01

June 2003

2826/01 Mark Scheme June 2003

The following annotations may be used when marking:

X = incorrect response (errors may also be underlined)

= omission mark

bod = benefit of the doubt (where professional judgement has been used)

ecf = error carried forward (in consequential marking)

con = contradiction (in cases where candidates contradict themselves in the

same response)

sf = error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

/ = alternative and acceptable answers for the same marking point

; = separates marking points NOT = answers not worthy of credit

() = words which are not essential to gain credit

(underlining) = key words which must be used

ecf = allow error carried forward in consequential marking

AW = alternative wording ora = or reverse argument

2826/01			Mark Scheme	June 2003	}	
1 (a)			Should be 'The temperature of the oven'	1		
	(b)		Although 5 °C is correctly 278 K a rise in temperature	1		
	•		of 5 °C is (exactly) equal to a rise in temperature of 5 K	1		
	(c)		'weight' should be 'mass'	1		
	(d)		mW should be MW / allow " 500mW is far too small "	1		
	(e)		tonne is a unit of mass	1		
	•		pressure requires unit of force per unit area / Pascal / Pa	1		
	OR		pressure should be replaced by force (1)			
			$5 \text{ tonnes} = 5000g \text{N} \tag{1}$			
	(f)		Being in space does not of itself result in weightlessness	1		
			reason - such as weightlessness being when in free fall	1		
	(g)		Weight is not a force on your feet	1		
			it is the pull of gravity on your body	1		11
2	(a)	(i)	A quantity having direction (as well as magnitude)	1	1	
		(ii)	displacement, magnetic flux density, weight to be underlined			
			mass, density, time, distance and kinetic energy not to be underline	ed		
			8 correct (4): 7,6 correct (3): 5,4 correct (2): 3,2 correct (1)	4	4	٠
	(b)	(i)	18 000	1		
			N s (OR kg m s ⁻¹)	1		
			In a direction to the right	1		
		(ii)	30 000 to the left (OR -30 000 to the right)	1		
		(iii)	18 000 to the left (OR -18 000 to the right)	1	5	
	(c)	(i)	e.g. adding two forces	1		
			to obtain a resultant force	1		
		(ii)	2 correct vectors, e.g. force x velocity or force x displacement	1		
			correct equation and scalar	1	4	14
			(Allow (1) for force x distance = work)			

Downloaded from http://www.thepaperbank.co.uk Mark Scheme			June 2003		
3	(a)		correct direction of arrows shown	1	
	` '		(Circular arrow in clockwise direction allowed)		
			use of motor rule / (Fleming's) left hand rule	1	
			left hand first finger - field, second finger - current	1	
÷			thumb (correctly) giving direction of force / motion	1	4
			(These answers can be credited if right hand rule is incorrectly give	en)	
	(b)	(1)	12 V / 24 Ω (= 0.5 A)	1	
		(ii)	3.0 A - 0.5 A = 2.5 A	1	
		(iii)	$V \times I = P$	1	
			12 V x 3.0 A = 36	1	
			watt / W	1	
		(iv)	1. for electromagnet = $0.5^2 \times 24 = 6 \text{ W}$ OR $12 \times 0.5 = 6 \text{W}$	1	
			2. for armature power wasted = f^2R	1	
			power wasted = $2.5^2 \times 2 = 12.5 \text{ W}$	1	
		(v)	36 - 12.5 - 6 = 17.5 W	1	9
	(c)	(i)	The field remains constant (for most of the time)	1	
			so the power supplied cannot be changed to magnetic energy / fie	ld 1	
		(ii)	the armature is supplying mechanical power	1	
			6 A would be the current only if the armature was a pure resistor	1 ,	
		(iii)	although off load there is still friction / wind resistance	, 1	5
	(d)	(1)	current to armature 12 V / 2 Ω = 6 A	1	
			current to electromagnet still 0.5 A so total current 6.5 A	1	
		(ii)	When the armature is jammed power wasted in armature is heat	1	
			power = $f^2R = 6^2 \times 2 = 72 \text{ W}$	1	
			insulation on the wires of the armature may well melt	1	5

OR temperature of wires may be high enough to melt / fuse wire

2025/04		Mark Scheme		,
2826/01		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	June 2003	•
4 (a)		resultant force must be zero	1	
		resultant torque must be zero	1	2
		or in terms of moments		
(b)		e.g. during construction (it is not loaded, but) it must not collapse (for	
		the safety of personnel)	1	•
		e.g. during use, when it is loaded, it must not break	1	2
(c)		e.g. acceleration must be zero; e.g. lift must equal weight	1	1
(d)	(i)	e.g. a bottle of milk after being in a fridge all night	1	
	(ii)	e.g. a person at a temperature above his surroundings	1	2
(e)		energy gains MAXIMUM 2		
		almost all energy gains are electromagnetic radiation from the Sun	ı 1	
		in the form of infra-red radiation (+ some others)	1	
		not uniform over the whole Earth	1	
		not uniform over any short period of time	1	
		other valid point e.g. some heat from interior of Earth	1	
		energy losses MAXIMUM 2		
		(infra red) radiation from the Earth	1	
		longer wavelength than radiation heating the Earth	1	
		in absence of cloud cover rate of radiation increases	1	
		other valid point	1	
		Balance of gains and losses MAXIMUM 2		
		Need to consider gains and losses over an extended period of time	e 1	
		For global warming net gains must exceed net losses	1	
		If total energy gain equals total energy loss then mean temperature	е	
		is unchanged	1	
		other valid point	1	
		OVERALL MAXIMUM 5		5

12