Downloaded from http://www.thepaperbank.co.uk

TELEC OMMUNICATIONS

Mark Scheme 2825/05 June 2003

Downloaded from http://www.thepaperbank.co.uk

2825/05		Mark Scheme				June 2003	
1 (a)	(i)	RF period	=	1 / 50 000	=	20 µs	[1]
	(ii)	AF period	=	1 / 5000	=	200 μs	[1]
	(iii)	Graph:	AM si	nape with 20 μ	s pe	riod carrier	[1]
			Sinus	Sinusoidal envelope with period of 200 µs			
		Explanation:	inform			alue of a (5 kHz) audi ot modulates) the amplitud	
(b)	(b) Any radio frequency undulating at audio frequency with approx same amplitude [1]						
	RF period (20μs) and AF period (200μs) correct					[1]	
	(If two independent signals drawn with correct periods and same amplitudes allow 1 / 2)						
	Total: 7				Total: 7		

D ₂	ownloaded from http://www.thepaperbank.co.uk Mark Scheme	June	2003
2 (a)	Op-amp powered to rails		[1]
	Any working inverting or non-inverting op-amp amplifier		[1]
	Realistic gain quoted (eg x 200 so saturation does not occur)		[1]
	Microphone correctly wired to op-amp input and 0V		[1]
•	LED used as output transducer (ignore polarity and allow filament lamp)		[1]
	Series resistor used		[1]
	Series resistor of realistic value (eg few 100Ω) [1]	(MAX	6)
	LED connected between op-amp output and -15V (or any means by which LED will be biased on eg summing amp)		[1]
	Explanation Need for appropriate op-amp gain to drive LED but avoid	saturatio	on [1]
	Need to bias LED so that it is on at all times		[1]
(b)	Photodiode used as input transducer (ignore polarity and allow LDR)		[1]
	Any working circuit (eg potential divider) with photodiode or LDR		[1]
	Series capacitor added to remove dc bias (or pot. divider set up betwe 15)	en +15	and - [1]
	Any working inverting or non-inverting op-amp amplifier		[1]
	Realistic gain quoted (eg x 100)		[1]
	Op-amp output connected to one end of loudspeaker		[1]
	Other end of loudspeaker correctly wired to 0V		[1]
	Explanation Need to amplify only the wobble in the light signal, hence		acitor

Total: 17

2825/0	Mark Scheme	June 2003				
3 (a)	(i)Sampling frequency= 1 / 0.02 x 10 ⁻³	[1]				
	= 50 kHz	[1]				
	(ii) Signal frequency = $1 / \text{period}$ = $1 / 0.24 \times 10^{-3}$	= 4167 Hz [1]				
	accept 4 kHz or 4.5 kHz (for 11 squares) or 3.8 k squares)	KHz (for 13				
(b)	Number of bits= 3	[1]				
	Because there are only 7 voltage levels (or 6 steps)	[1]				
	And 2 ^{number of bits} = maximum number of voltage levels (or some evidence of binary conversion)	[1]				
(c)	Bit rate in line = sampling frequency x number of bits					
	= 50 000 x 3 = 150 k bit sec ⁻¹	[1]				
(d)) (i) Maximum bit duration = 1 / 150 000 sec = 6.67 μs	[1]				
	(ii) highest pulse frequency = when bits arrive alternately ie 0101010101					
	= 150 000 / 2	[1]				
	= 75 kHz (Allow 1 / 2	2 for 150 kHz) [1]				
(e)	(e) With a shorter bit duration there will be time spaces created between samples (convite) Time-division multiplexing can take place Where the digital samples from several other users can share the same line (or wite) [1] Any [2] Or					
	More samples can be allowed Greater definition of output signal relative to input Greater bandwidth of information	[1] [1] [1] wo valid points)				

Total: 12

Total: 10

4 (a)		a single mode e same path lodal or multip is reduced	·		[1] [1] [1] [1] [1] ints)
(b)	distance is much gre	eater) or LED i narrow range t zero. ed on and off t	of wavelengths so effectiaster than an LED	•	[1] ion on [1] [1] [1]
(c)	Total attenuation	= 40 IB= 10 log Pa) x - 0.25 _{sut} / 25 x 10 ⁻³	[1]	[1] [1]
		P _{out} = 25	5 x 10 ⁻¹ mW		
(d)	Intensity = por	wer / area			
	= 2.5	× 10 ⁻³ / π×(-	4.5×10^{-6}) ²		[1]
	= 3.9	x 10 ⁷ W m ⁻²			
	= 39	MW m ⁻²			[1]
(e)	Signal-to-noise	= 35 dB	= 10 $\log 2.5 \times 10^3$ /	P _{noise}	[1]
	Noise power	P _{noise} = 7.	9 x 10 ⁻⁷ W		[1]

2825/05 Mark Scheme June 2003

5 (a) PSTN system for a normal phone co	<u>all</u>	;
---	------------	---

There is a continuous switched line between the two callers made up of wire-pairs and/or coax / optic fibre / satellite link [1]

A normal phone call works in real time (or wtte) [1] (ie the two callers share the line which connects them for as long as they wish to use it)

PSTN for Internet use:

File Transfer Protocol (or HTTP) causes data to be broken into packets

[1]

Packets contain limited volume of information + addresses etc

[1]

Packets are not transmitted as one continuous stream

[1]

Packets from the same database do not necessarily follow the same switched line / route

Packets do not necessarily arrive in the same order as that in which they were sent

[1]

Any four points

(b) Many jobs have been created to provide technical maintenance for Internet [1]

Many jobs have been created to provide software for Internet [1]

Many jobs have been created to sell goods and services over the Internet [1]

Internet provides alternative to traditional shopping [1]

Internet allows people with little expertise easy access to huge volumes of information [1]

Internet allows remote information gathering (eg medical without visiting doctor)

[1]

Internet allows many individuals to work from home [1]

Any four valid points

Total: 10

[1]

(Any two sensible points)

Total: 14

Or polarisation by reflection could be utilised

7	(a)		Quieter Less pollution/more environmentally friendly	Or other valid point, eg petrol supplies finite, safety(batteries less of fire hazard), can utilise renewable energy	2
	(b)		P = VI	0/3 for wrong ans no	1
	\ <i>\</i>		750 Wh = 750/12	working	1
			= 62.5 Ah	0.75/12=0.0625 (2/3) 3/3 for correct ans.	1
	(c)	(i)	No. of batteries = 960/16 = 60	-1 for each error	1
	(-)	.,	No of kWh = 0.75 x 60 = 45 kWh = 45 x 1000 x 3600 = 162 MJ	1.62 x 10 ⁸ MJ (2/3)	1
		(ii)	Work done = Fd	Allow 1sf if working	•
		(/	$D = 162 \times 10^6/300$	shown	1
			= 540 km		1
	(d)	(i)	Mass of petrol = 162/50 kg = 3.24 kg	Ecf	1
	,	•	Volume = m/p (stated or implied) =3.24/700 = 4.6 x10 ⁻³ m ³	Or equivalent	1
		(ii)	Energy lost/not 100% efficient	General comment	1
		` '	As heat etc.	+ detail	1
	(e)		Compare:- • mass.	Any 3 from 4	•
			• size,		
			 likely performance of petrol vs batteries, 		
			 sensible statement about range 		
			Concluding comment		3