

Mark Scheme 2825/04

June 2003

2825/04

Mark Scheme

June 2003

Question	Expected Answers	Ma	rks
1 (a)	graph: curved, in correct sense starts at origin and eventually approaches horizontal (straight line scores zero)	1	[2]
(b)	r ₀ is radius of 1 proton/ neutron/ nucleon/ hydrogen nucleus (not nucleus/ nuclei/ atom/ molecule)	1	[1]
(c)	$r_0 = r/A^{1/3} = 3.53 \times 10^{-15}/16^{1/3}$ correct subs. (= 1.4 x 10 ⁻¹⁵)m	1	[1]
(d)	$r = r_0 A^{1/3} = 1.40 \times 10^{15} \times (79 + 118)^{1/3}$ subs. = 8.15x10 ⁻¹⁵ m allow 8.1 x 10 ⁻¹⁵ or 8.2 x 10 ⁻¹⁵ omits 79 or 118 can score 1/2	1	[2]
(e)(l)	$V = (4/3) \pi r_0^3$ = $(4/3) \pi (1.4 \times 10^{-15})^3$ = $1.149 \times 10^{-44} \text{ m}^3$ allow 1 sf (using gold or oxygen radius can score 1/2 only)	1 1	[2]
(11)	(likely to be) more than16 times as great because of spaces between nucleons (calculated values compared scores zero)	1	[2]

Downloaded from http://www.thepaperbank.co.uk 2825/04 Mark Scheme

June	70	מת

similarity: both have same number/ 92 (of) protons/ charge/ are radioactive difference: either have different numbers/146 and 143 (of) neutrons or 235U fissions but 236U does not (not different mass number/nuceon number)	1	
Reaction 1: $^{238}_{92}U + ^{1}_{0}n \rightarrow ^{239}_{92}U$ Reaction 2: $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{236}_{92}U$ (showing only fission products on RHS does not score)	1	
$^{239}_{92}$ U -> $^{239}_{93}$ Np + $^{0}_{-1}$ e (+v-bar) $^{239}_{93}$ Np -> $^{239}_{94}$ Pu + $^{0}_{-1}$ e (+v-bar) allow $^{0}_{-1}\beta$ or $^{0}_{-1}$ e (if equation not clear but $^{0}_{-1}$ e comes sideways from = sign, allow 1/2 max)	1	1
(anti)neutrino/ v	1	ĺ
two nuclei not nuclides/ isotopes/ atoms/ molecules/ elements/ fragments	1	
(several) neutrons	1	Ţ.
0.01%	1	ĺ
total mass/number of nucleons of products (from one nucleus) is constant so for every product nucleus which has less than half the mass of the fissile foriginal nucleus, there is a nucleus which has more than half its mass or	1	
wtte	1	[2
	difference: either have different numbers/146 and 143 (of) neutrons or 235U fissions but 236U does not (not different mass number/nuceon number) Reaction 1: 238 92U + 10n -> 239 92U Reaction 2: 235 92U + 10n -> 236 92U (showing only fission products on RHS does not score) 239 92U -> 239 93Np + 01e (+v-bar) 239 93Np -> 239 94Pu + 01e (+v-bar) allow 0.1β or 0.1e (if equation not clear but 0.1e comes sideways from = sign, allow 1/2 max) (anti)neutrino/ v two nuclei not nuclides/ isotopes/ atoms/ molecules/ elements/ fragments not specific example (several) neutrons 0.01% total mass/number of nucleons of products (from one nucleus) is constant so for every product nucleus which has less than half the mass of the fissile /original nucleus, there is a nucleus which has more than half its mass or	difference: either have different numbers/146 and 143 (of) neutrons or 235U fissions but 236U does not (not different mass number/nuceon number) Reaction 1: 238 92U + 1 0n -> 239 92U fission products on RHS does not score) 239 92U -> 239 93Np + 0.1e (+v-bar) fif equation not clear but 0.1e comes sideways from = sign, allow 1/2 max) (anti)neutrino/ v 1 two nuclei not nuclides/ isotopes/ atoms/ molecules/ elements/ fragments not specific example (several) neutrons 1 0.01% 1 total mass/number of nucleons of products (from one nucleus) is constant so for every product nucleus which has less than half the mass of the fissile /original nucleus, there is a nucleus which has more than half its mass or

		1	
3(a)	high temperature/convert gas to plasma (1) high temperature means (particles move at) high speed /high energy high speed nuclei can overcome repulsion /Coulomb barrier (1) sufficient/high density of tritium and deuterium high density means more nuclei per unit volume so increased probability of reaction (1) containment/confinement by magnetic field to prevent plasma touching the sides/ contamination/ cooling of plasma (1) (not high pressure, not high temp. to form plasma) any 4	4	[4]
(b)	$^{2}_{1}D + ^{3}_{1}T -> ^{4}_{2}He + ^{1}_{0}n (+ energy)$ or $^{2}_{1}H + ^{3}_{1}H -> ^{4}_{2}He + ^{1}_{0}n (+ energy)$ or $^{2}_{1}H + ^{3}_{1}H -> ^{3}_{2}He + 2^{1}_{0}n (+ energy)$ LHS 1/2 RHS 1/2	2	[2]
(c)	BE/nucleon: 2 H: 1.1; 3 H: 2.9; 4 He: 7.1 (MeV) BE/nucleus: 2 H: 2.2; 3 H: 8.7; 4 He: 28.4 (MeV) so reactants have total BE = 2.2 + 8.7 = 10.9 (MeV) products have total BE = 28.4 (MeV) (${}^{1}_{0}$ n has BE = 0) so energy released = 28.4 - 10.9 = 17.5 (MeV) = 17.5 x 10 ⁶ x 1.6 x 10 ⁻¹⁹ = 2.8 x 10 ⁻¹² J using 7.1 - 4 leading to 4.96 x 10 ⁻¹³ scores 2/4 (1 0 0 1)	1 1 1 1	[4]
(d)	lithium blanket (1) neutron absorbed/captured by Li (1) ke of neutron is converted to heat in lithium (1) heat exchanger/heat passed to water (1) (heat made to) boil water to produce steam (1) turns generator/ turbine to generate electrical energy (not electricity) (1) quotes either equation: ${}^{6}_{3}\text{Li} + {}^{1}_{0}\text{n} \rightarrow {}^{3}_{1}\text{H} + {}^{4}_{2}\text{He}$	5	[5]

Downloaded from http://www.thepaperbank.co.uk 2825/04 Mark Scheme

June 2003

4(a)	looks correct shape: spirals outwards quality of sketch - looks circular within dees (no tracks between dees can get 1/2 max.)	1	
(b)(i)	$BQv = mv^2/R$ (so $v = BQR/m$) (magnetic force) $F = Bev$ gets 1 (centripetal force) $F = mv^2/R$ gets 1	2	
(II)	$t = s/v$ or $v = s/t$ $t = \pi R/v$ loses first mark unless πR stated as distance $T = \pi R/(BQR/m)$ (= $\pi m/BQ$)	1	1
(c)(l)	expression for f/time independent of R frequency of source must be same as freq. of/in step with proton proton acceleration changes direction (every half cycle) so pd must change direction pd must synchronise with particle crossing gap between dees (1) any 1	1	[2
(11)	f = 1/(2T) or $f = 1/T$ or $f = 1/period= BQ/(2 \pi m)$	1	[2
(d)	$f = BQ/(2 \pi m) = 1.5 \times 1.6 \times 10^{-19}/(2 \pi \times 1.67 \times 10^{-27})$ subs. = 2.29 x 10 ⁷ Hz appropriate unit for number given	1	[2]

2825/04

Mark Scheme

June 2003

5(a)(i)	strong (interaction)	1	[1]
(ii)	graph: shape - general shape - (asymptotic to force axis) falls to zero against distance axis labels: attraction and repulsion correctly labelled	1 1 1	[3]
(b)	the neutron inside nucleus: (relatively) stable (1) when free: unstable/ decays (1) half life about 15 mins. (not decays in 15 mins.) (1) the proton inside nucleus: (relatively) stable when free: probably unstable $\frac{or}{(unstable \ with)}$ half $\frac{decay}{decay}$ (1) in the nucleus p can decay into $\frac{decay}{decay}$ inside/outside nucleus - doesn't score)		(5)
(c)	charge: -1 + 1 = 0 + 0 baryon number: 0 + 1 = 1 + 0 strangeness: 0 + 0 = 0 + 0 conclusion: reaction may take place allow ecf (if = sign missing -1 if + sign missing -1)	1 1 1	[4]
6(a)	momentum = mv = $6.68 \times 10^{-27} \times 1.8 \times 10^7 = 1.20 \times 10^{-19} \text{ N s}$	1 1	[2]
(b)	ke of α - particle = $\frac{1}{2}m^2$ = $\frac{1}{2}6.68 \times 10^{-27} \times (1.38 \times 10^7)^2$ = $6.36 \times 10^{-13} \text{ J}$ ke of helium nucleus = $\frac{1}{2}m^2 = \frac{1}{2}6.68 \times 10^{-27} \times (1.15 \times 10^7)^2$ = $4.42 \times 10^{-13} \text{ J}$ allow 2 sf on each answer	1 1 1	[3]
(c)(i)	so total ke after collision equal to ke of incident α – particle total ke before collision = $(6.36 + 4.42) \times 10^{-13} = 1.08 \times 10^{-12}$ J or other evidence of a calculation	1	[2]
(II)	collision is elastic accept 'kinetic energy is conserved in this collision' allow ecf from (c)(i)	1	[1]

7	(a)		Quieter	Or other valid point, eg	2
	ĺ	}	Less pollution/more environmentally friendly	petrol supplies finite,	1
	- 1	ì		safety(batteries less of	1
	}			fire hazard), can utilise renewable energy	1
	(b)	1	P = VI	0/3 for wrong ans no	1
	1 ' ')	750 Wh = 750/12	working	1
	}	}	= 62.5 Ah	0.75/12=0.0625 (2/3)	11
		 	<u> </u>	3/3 for correct ans.	
	(c)	(i)	No. of batteries = 960/16 = 60	-1 for each error	1
	1	}	No of kWh = $0.75 \times 60 = 45 \text{ kWh}$	1.62 x 10° MJ (2/3)	1
		 	= 45 x 1000 x 3600 = 162 MJ		1
	1	(II)	Work done = Fd	Allow 1sf if working	1
	- [1	$D = 162 \times 10^6/300$	shown	1
		<u> </u>	= 540 km	<u> </u>	11
	(d)	(I)	Mass of petrol = 162/50 kg	Ecf	1
	}	j	= 3.24 kg]	1
		}	Volume ≈ m/p(stated or implied)	Or equivalent	[1
		1	=3.24/700 = 4.6 x10 ⁻³ m ³		1
		(11)	Energy lost/not 100% efficient	General comment	1
		<u> </u>	As heat etc.	+ detail	11
	(e)		Compare :-	Any 3 from 4	-
	Į.	1	• mass,	}	ĺ
	- (1	• size,	†	1
	1	1	 likely performance of petrol vs batteries, 	1	(
	1	1	sensible statement about range	}	(
	1	}	Concluding comment	((
	J .	1	<u> </u>		3