Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2825/03

June 2003

The following annotations may be used when marking:

- incorrect insponse (errors may also be underlined)
- omission mark
- benefit of the doubt (where professional judgement has been used)

 - error carried forward (in consequential marking)
 contradiction (in cases where candidates contradict themselves in the iarne response)
- serror in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

alternative and acceptable answers for the same marking point

To the second section

- separates marking points
- answers not worthy of credit
- words which are not essential to gain credit
- key words which must be used
- allow error carried forward in consequential marking
- alternative wording
- or reverse argument

Downloaded from http://www.thepaperbank.co.uk

2825/03 Mark Scheme June 2003

1.	(a)	(i) (ii)	amorphous polycrystalline	(1) (1)	[2]
	(b)	(i)	grain boundary: dividing line between the crystals / grains (in a metal).		[1]
			dislocation: part of a plane of atoms is missing.		[1]
		(ii)	point defect / interstitial defect /substitution defect.		[1]
	(c)		Plastic behaviour involves the slippage of one layer of atoms over another. Dislocations cause weakness in a crystal structure and allow the slippage to take place more easily.	(1) (1) (1)	[3]
	(d)	(i)	The movement of dislocations (through copper) is limited as they become pinned / tangled when they meet with a zinc atom. OR In brass, fracture stress is less than slip stress (1) so material breaks before slip occurs. (1)	(1) (1)	[2]
		(ii)	e.g. Wood screws (are made of brass, not copper).		[1]
	(e)	(i)	Mass of ice = 30 x 1 x 920 = 27600 kg Pressure = F/A = 27600 x 9.8 / 1 = 2.7 x 10 ⁵ Pa	(1) (1)	[2]
		(ii)	Allows flow to take place.		[1]
2.	(a)		Graph crosses x-axis at $x = 0.22$ nm; has minimum at $x = 0.26$ nm where $F = 1.5 \times 10^{-10}$ N; is asymptotic to x-axis; shows steep rise below $x = 0.22$ nm.	(1) (1) (1) (1)	[4]
	(b)	(i)	Theoretical breaking force = $2.5 \times 10^{13} \times 1.5 \times 10^{-10}$ = 3750 N	(1) (1)	[2]
		(ii)	e.g. Structure contains Dislocations; Point defects; Grain boundaries; All bonds need not break simultaneously; Surface of wire has cracks.	(1) (1) (1) (1) (1) max	: [2]

2825/03			Mark Scheme June 200	June 2003	
3.	(a)		Sketch of light ray undergoing total internal reflection / reflections. Explanation that angles of incidence are greater than critical angle	(1) (1)	[2]
	(b)	en e	Light photons; provide energy; to promote / excite electrons in metal atoms to higher energy levels;	(1) (1) (1)	[3]
. •	(c)	(i)	Scattering due to: small variations of density in the glass / (forced) vibration of (randomly spaced) electrons.		[1]
		(H)	Amount of scattering is inversely proportional to λ^4 / Reference to $1/\lambda^4$ Scattering of infra-red is $(500/1500)^4 = 1/81$ that of visible. 10/81 % = 0.12 % of infra-red is lost.	(1) (1) (1)	[3]
4.	(a) ∵	(t)	n is number of free electrons / charge carriers per unit volume / m³.		- [1]
		(ii)	n = I/Ave = $0.0036/(8.2 \times 10^{-6} \times 80 \times 1.6 \times 10^{-10}) = 3.4 \times 10^{10} \text{ m}^{-3}$	(1) (1)	[2]
		(Hi)	In a metal the conduction band (of energy levels) is permanently occupied by electrons, so many are available for conduction; In a semiconductor electrons must be promoted from the valence to the conduction band by thermal energy and few are available at normal temperatures.	(1) (1)	[2]
	(b)	(i)	I = V/R	(1)	
			At 0 °C I = 6/1500 = 0.0040 A	(1)	
2.			At 50 °C = 6/450 = 0.013 A	(1)	[3]
ar s		(ii)	More free electrons become available / move into the conduction band tending to allow more current / lower resistance. Amplitude of vibration of the atoms of the semi-conductor increases	(1) (1)	
			tending to allow less current / higher resistance. (Changes have opposite effect but) change due to more free electrons	(1)	
			is greater so resistance falls.	(1)	[4]
	(c)		The resistance does not change uniformly with temperature. Scale divisions become farther apart as reading increases, Allow (1) for reference to logarithmic change of resistance.	(1) (1)	[2]

2825/03 **Mark Scheme June 2003** 7 Quieter Or other valid point, eg (a) Less pollution/more environmentally petrol supplies finite, safety(batteries less of friendly. fire hazard), can utilise renewable energy 0/3 for wrong ans no (b) working 750 Wh = 750/12 0.75/12=0.0625 (2/3) = 62.5 Ah 3/3 for correct ans. No. of batteries = 960/16 = 60-1 for each error (c) (i) $1.62 \times 10^8 \text{ MJ } (2/3)$ No of kWh = $0.75 \times 60 = 45 \text{ kWh}$ $= 45 \times 1000 \times 3600 = 162 \text{ MJ}$ (ii) Work done = Fd Allow 1sf if working $D = 162 \times 10^6/300$ shown $= 540 \, \text{km}$ Mass of petrol = 162/50 kg Ecf (d) (1) = 3.24 kgOr equivalent

Volume = m/ (stated or implied) ±3.24/700 = 4.6 x10⁻³ m³ (ii) Energy lost/not 100% efficient As heat etc.

• mass.

Compare :-

• size.

likely performance of petrol vs batteries,

sensible statement about range
 Concluding comment

angrya, in the first

•

General comment

+ detail

Any 3 from 4

2

3