Downloaded from http://www.thepaperbank.co.uk

HEALTH PHUSICS

Mark Scheme 2825/02 June 2003

2825/02	Downloaded from http://www.thepaperbank.co.	uk June 2003
1 (a)(i)	the ability of the ear to just detect a sound / minimum intensity that car detected (at a given frequency) / allow 'quietest sound' do not allow 'minimum frequency'	n be (B1)
(ii)		(B1)
	or the ability of the ear to detect changes in frequency and any 1 from most sensitive at about 1 – 3 kHz increasingly less sensitive at frequencies < 1 kHz and > 3 kHz responds in the frequency range 20 – 10 kHz	(B1)
(iii)	resonance (due to the length of closed ear canal) / length of ear canal λ / 4	(D4)
		(B1)
(b)(i)		(C1) (C1) (A1)
(ii)(n	o,) as the minimum intensity required to be detected at a frequency of 200Hz is about 10 ^e Wm ⁻² / no because it is lower than the threshold (that frequency) / ecf (b)(i)	at (B1)

2 (a	(i) $3 \times 2.8 \times 10^3$ m = 8.4 mm or 8.3 mm if calculated with μ = 250 m ⁻¹	(A1)			
	In $0.125 = -\mu \times 3 \times 2.8 \times 10^{-3}$ or in 0.50 (or-In2) = $-\mu \times 2.8 \times 10^{-3}$	(B1) (B1) (B1)			
(b	(b) less photons (or X-rays) get through some photons are absorbed / scattered / or ref. to photoelectric effect do not allow other attenuation mechanisms or 'reflection'				
(0	7 1 7	(C1) (A1)			
	· · · · · · · · · · · · · · · · · · ·	(C1) (A1)			
	<u> </u>	(C1) (A1)			
($D = 0.020 / 65 \times 10^{-3}$ $D = 0.31$	(C1) (C1) (A1) (B1)			
(0	d) any 5 from direct: ionisation of (biologically important) molecules such as DNA which damages DNA leading to mutation / cancer / cell death /failure of cell to divide /cell damage	(B1) (B1) (B1)			
	indirect: causes ionisation of water molecules (in cells) / produces free radicals / hydrogen peroxide formed / oxidising agent formed which reacts with DNA	(B1) (B1)			
	damages cell membrane / affects permeability of cell membrane	(B1)			
• •	table: any 3 correct, (B1) (ignore sig.fig.) 0.25, 0.50, 1.00, 2.00 5 points plotted correctly (B1) +/- ½ a small square line of best fit	(B1) (B1) (B1)			
(c)	measurements correctly taken from graph gradient calculated as 1.04 +/- 0.05 do not allow 1	(B1) (A1)			
(d)	y-intercept measured or calculated as 52.5 +/- 0.1 unit D	(A1) (B1)			
(e)	1/b is the image distance / or 'b' is the power of the eye when viewing an object at infinity / or power of the eye when eye is relaxed / unaccommodated				
	it is a constant as the distance from the retina to the cornea is fixed / ref. to the minimum power of the eye is fixed / power cannot get any lower	(B1) 0 (B1)			

l (a)		accommodation: the ability of the eye to change its power / focal length ref. to changing the shape of the lens /ability of eye to focus on objects a	(B1)
(b)	(i)	$p_1 = 1/u_1 + 1/v$ allow substitution of v as about 0.020 m $p_2 = 1/u_2 + 1/v$ $p_1 - p_2 = 1/u_1 - 1/u_2$ change in power = 1/0.25 - 1/0.15 = (-)2.67 D	(C1) (C1) (A1)
	(ii)	concave / diverging (do not allow ecf from (i))	(B1)
5 (a)		correct position of T indicated by a line ending on the black area of the muscle any correct position of X	(B1) (B1)
(b)		ligaments hold the bones together	(B1)
(c)		total weight supported by legs is $0.70 \times 700 = 490 \text{ N}$ each leg weighs $(700 - 490)/2 = 105 \text{ N}$	(C1) (A1)
(d)		centre of mass / centre of gravity is moved over the other foot / leg	(B1) (B1)
(e)	(i)	moment = force x (perpendicular) distance to fulcrum moment = $4.0 \times 9.8 \times 0.20 \cos 45^{\circ}$ moment = 5.54Nm 7.84 Nm (omit cos 45) gets 2/3 5.6 or 5.7 Nm (g = 10 ms^{-2}) gets 2/3	(C1) (C1) (A1)
	(ii)	clockwise moment (at equilibrium) = anticlockwise moments or $F \times 0.020 \sin 45^\circ = 5.54$ F = 392 N $F = 277 N$ (omit sin 45) gets ½	(C1) (A1)
	(iii)	MA = load / effort MA = 4.0 x 9.8 / 392 ecf from (ii) MA = 0.10 ignore units if given	(C1) (C1)

6	Any 7 e.g. nuclei /atoms, (with unequal nos. of neutrons and protons) spin act like tiny magnets align in an external magnetic field they precess / wobble RF radiation pulse is applied resonance occurs / nuclei flip RF emitted by nuclei and detected the time taken for the nuclei to return to their equilibrium state (is measure							
	/ time taken to return to equilibrium state is called the relaxation time hydrogen atom is (most commonly) used different tissues have different hydrogen content and so can be differential							
	higher	n-ion entiate reso	<u>ising</u> es well between tissues (of similar density)		(B1) (B1) (B1) (B1)			
7	(a)		Quieter Less pollution/more environmentally friendly	Or other valid point, eg petrol supplies finite, safety(batteries less of fire hazard), can utilise renewable energy				
	(b)		P = VI 750 Wh = 750/12 = 62.5 Ah	0/3 for wrong ans no working 0.75/12=0.0625 (2/3) 3/3 for correct ans.	1 1 1			
	(c)	(i)	No. of batteries = 960/16 = 60 No of kWh = 0.75 x 60 = 45 kWh = 45 x 1000 x 3600 =162 MJ	-1 for each error 1.62 x 10 ⁸ MJ (2/3)	1 1 1			
		(ii) 	Work done = Fd D = 162 x 10 ⁶ /300 = 540 km	Allow 1sf if working shown	1 1 1			
	(d)	(i)	Mass of petrol = 162/50 kg = 3.24 kg Volume = m/p(stated or implied) =3.24/700 = 4.6 x10 ⁻³ m ³	E <i>c</i> f Or equivalent	1 1 1			
	(e)	(ii)	Energy lost/not 100% efficient As heat etc. Compare :- mass, size, likely performance of petrol vs batteries,	General comment + detail Any 3 from 4	1			
			 sensible statement about range Concluding comment 		3			

Downloaded from http://www.thepaperbank.co.uk