

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

PHYSICS A

2823/01

Wave Properties

Friday

31 MAY 2002

Afternoon

45 minutes

Candidates answer on the question paper. Additional materials: Electronic calculator

Candidate Name	Centre Number	Candidate Number

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE				
Qu. Max.				
8				
. 13				
10				
5				
9				
45				
	Max. 8 13 10 5			

Data

speed of light in free space,	$c = 3.00 \times 10^8 \text{ m s}^{-1}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$
permittivity of free space,	$\epsilon_0 = 8.85 \times 10^{-12} \; \mathrm{F} \mathrm{m}^{-1}$
elementary charge,	$e = 1.60 \times 10^{-19} \text{ C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

Formulae

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$n = \frac{1}{\sin C}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

$$C = C_1 + C_2 + \dots$$

$$x = x_0 e^{-t/CR}$$

$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

$$x = x_0 e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

critical density of matter in the Universe, $\rho_0 = \frac{3H_0^2}{8\pi G}$

$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

$$=\sqrt{(1-\frac{v^2}{c^2})}$$

$$I = nAve$$

$$r = r_0 A^{1/3}$$

$$= 10 \lg \left(\frac{I}{I_0}\right)$$

Fig. 1.1 shows a laboratory experiment to determine the refractive index *n* for red light, from a laser, passing from air into a liquid.

Fig. 1.1

- (a) (i) Show on Fig. 1.1 the angle of incidence i, and the angle of refraction r.
 - (ii) State how the refractive index *n* would be calculated from the measured values of *i* and *r*.

[1]

[2]

- (b) The speed, frequency and wavelength of the light beam in air are v, f and λ respectively.
 - (i) By placing ticks (✓) in the appropriate boxes of Fig. 1.2 show which of these terms increase, decrease or stay the same when the light enters the liquid. [3]

	increase	decrease	stay the same
speed			
frequency			
wavelength			

Fig. 1.2

(ii) State, for those that change, their new value in terms of v, f, λ and n.

[2]

[Total: 8]

2 Fig. 2.1 shows a step index optic fibre with a ray of light striking the core/cladding boundary at angle of incidence θ .

Fig. 2.1

(a)	(i)	State the name of the effect shown in Fig. 2.1.
		[1]
	(ii)	State the conditions necessary for the ray in Fig. 2.1 to be completely reflected into the core.
		[2]
(b)	The	optic fibre is 900 m long and the core of the fibre has a refractive index of 1.48.
	(i)	Calculate the speed of light in the core.

speed	=	 	 	 m s ⁻¹	[2
		 	 	 	L

	•
(ii)	Calculate the minimum time taken for light to travel along the core of the fibre.
	time = s [2]
(iii)	The ray following the path shown in Fig. 2.1 takes approximately 45 ns longer than the minimum time to travel along the fibre. Estimate, by calculation, the extra distance travelled by this ray.
	distance = m [2]
	nicrosecond pulse of monochromatic laser light has a square shaped intensity-time file, as shown in Fig. 2.2a, and is sent into one end of the fibre.
intens	sity A intensity A
	→ time
	Fig. 2.2a Fig. 2.2b
(i)	Show on Fig. 2.2b how the pulse shape will have changed after passing through a long length of fibre. [2]
(ii)	Explain why the pulse shape has changed.

(c)

[Total: 13]

3	(a)	Two coherent light wavetrains meet at a point and <i>interfere destructively</i> . Explain what this means and state two conditions that must be fulfilled before totally destructive interference can occur.
		[3]

(b) Fig. 3.1 shows an experiment to demonstrate interference effects with microwaves. A transmitter, producing microwaves of wavelength λ , is placed in front of two slits separated by a distance a. A receiver is used to detect the strength of the resultant wave at different points in front of the slits.

Fig. 3.1

Explain, in terms of the path difference between the wavetrains emerging from the

	slits S_1 and S_2 , why a series of interference maxima are produced along the line YZ.
	······································
	[2]
(ii)	Assuming that the interference of the microwaves is similar to double slit interference using light, state in terms of a , D and λ , an expression for the distance x between neighbouring minima on the line YZ.
	[1]

doubled.	
[2]	
	(c)
[2]	
[Total: 10]	

4 (a) Draw a labelled diagram to show how plane water waves, in a ripple tank, are diffracted as they pass through a narrow rectangular slit.

[3]

(b) Fig. 4.1 shows a piano being played on one side of a wall. Suggest why the person standing on the other side of the wall can hear the piano clearly even though she cannot directly see it.

Fig. 4.1

[2]
PT-4-1. P

[Total: 5]

5 (a)		r ansverse wave p ky will move as the		slinky coil. State ho	w any single coil in the
	••••				
	,				
	••••				

					[2]
(b)			measuring cylinder. Tolowing horizontally a		e cylinder can be made cylinder.
		e de			
			Fig. 5.1	Fig. 5.2	
	(i)	State the direction produced.	n in which the particle	es in the air column	move when the note is
					[1]
·	(ii)	fundamental). Lal	in Fig.5.1 is probel on Fig.5.1 the pentitional matter in the letter in	ositions in the cylin	frequency note (the der of a node, with the [1]

(iii)	The length of the air column is 0.40 m and the speed of sound in air is 320 m s ⁻¹ .
	Calculate the frequency of the lowest (fundamental) note.

frequency = Hz [3]

(iv) Label on Fig. 5.2 the positions of nodes (N) and antinodes (A) when a note of higher frequency is being produced. [2]

[Total: 9]

BLANK PAGE

BLANK PAGE

OCR has made every effort to trace copyright holders of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.