Question 1 (a)		Expected Answers Same speed (mandatory) as energy transfer is the same / some further		Marks 2 [2]	
•	(4)	qualification, e.g. (increase in) k.e = (loss in) p.e./car falls through same height	2	[2]	
	(b)	(i) $h = 1.2 \sin 45 = 0.85 \text{ m}$	1		
	` ,	mgh; = 0.05 x 9.8 x 0.85 = 0.42 (J) accept g =10ms ⁻²	2		
		(ii) $1/2mv^2 = 0.42$ ecf or $v^2 = 2gh$	1		
		$v = 4.1 \text{ (m s}^{-1})$	1	[5]	
	(c)	(i) $m(v + 2v/3)$; = 5m = 0.25; kg m s ⁻¹ /N s	3		
		(ii) $F = m \Delta v / \Delta t$; = 1.25 (N) ecf c(I)	2	[5]	
		Total		12	
2	(a)	C = Q/V with symbols explained or charge per unit potential			
		difference/voltage	1	[1]	
	(b)	(i) (Electrons/negative) charge are/is moved from one plate of C to other plate (by the action of the battery) or battery sets up instantaneous			
		current in circuit	1		
		(ii) $Q = CV = 500 \times 12 = 6000 (\mu C)$	1	[2]	
	(c)	(i) Initial current = 6 mA; $R = VII = 2 \times 10^3$ (Ω) or finding RC = 1.0 s;	2		
	• •	value of R			
		(ii) RC = 1.0 (s) ecf	1		
		(iii) $l = 6 \times (10^{-3}) e^{-t}$ ecf	1		
		(iv) Area under curve (is the integral of current against time/sum of $I \times \Delta t$			
		at all t); charge = current x time / a mathematical link	2		
		(v) Initial current = 12 mA; curve with time constant = 0.5 s	2	[8]	
		Total		11	
3	(a)	Internal energy is the sum of the (random) kinetic and potential energies;			
		of the molecules/atoms/particles in the system/body	2		
		s.h.c. is the change in (internal) energy per unit mass/energy required to			
		heat unit mass/kg per unit rise in temperature/ ^O C/K	1	[3]	
	(b)	$Q = mc\theta$	1		
		$= 600 \times 1.1 \times 10^{3} \times 40$	1		
		$= 2.6 \times 10^{7}/26 \text{ M(J)}$	1	[3]	
	(c)	Combine $pV = nRT$ and $U = 3/2nRT$; to give $U = 3/2 pV$	2		
		$= 3/2 \times 1.0 \times 10^5 \times 24 ; = 3.6 \times 10^6 / 3.6 \text{ M(J)}$	2		
		or $n = m/M$ where $m = \rho V$; $n = 1.3 \times 24/0.03 = 1040$	2		
		$U = 3/2nRT = 3/2 \times 1040 \times 8.31 \times 293$; = 3.8 x 10 ⁶ /3.8 M(J)	2	- 4-	
		or using $pV = nRT$ to find n gives $n = 986$ with $U = 3.7 \times 10^6/3.7$ M(J)		[4]	
		Total		10	

2824

Question		Expected Answers		Marks	
4	(a)	(i) Labelled horizontal arrows outwards	1	[23	
		(ii) $F_e = Q^2/4\pi\epsilon_0 r^2$; = 9 x 10 ⁻¹⁶ x 9 x 10 ⁹ /36 x 10 ⁻⁴ = 2.25 x 10 ⁻³ (N)	2	[3]	
	(b)	Labelled arrows for weight (down) and tension (along string)	1 1	[1]	
	(c)	(moments about suspension) $mgl \sin\theta = F_e l \cos\theta$	ı		
		or (resolution) $T \sin\theta = F_e$, $T \cos\theta = mg$	_		
		$Tan\theta = F_e/mg$; = 2.25 x 10 ⁻³ /8.0 x 9.8 x 10 ⁻⁴ giving θ = 16°	2	- 4-	
		$2\theta = 32^{\circ}$	1	[4]	
	(d)	$F_g = Gm^2/r^2$; calculation to give 1.2 x 10 ⁻¹⁴ N or $F_g/F_e = Gm^24\pi\epsilon_0/Q^2$ $F_g/F_e = 1.2 \times 10^{-14}/2.25 \times 10^{-3} = 5.3 \times 10^{-12}$	2		
			2	[4]	
		Total		12	
5	(a)	He nucleus, a few cm/3 to 10 cm			
		About 1 m / 0.3-2 m /several m, 1 to 10 mm Al / 1 mm Pb			
		(high energy) e-m radiation, 1-10 cm of Pb/several m of concrete			
		2 correct 1 mark, 4 correct 2 marks	3	[3]	
	(b)	Source, absorbers placed in front of detector on diagram	1		
		How results identify source)	2		
		Allowance for background) to max 2	1		
		Allow for distance expt to max 2		[3]	
	(c)	(i) ²³⁵ U decays to N/2 ⁶ ; ²³⁸ U decays to N/2	2		
		$= 1/2^5 = 0.03$	1		
		(ii) Ratio will have reached 0.0075 in a little over two half lives of ²³⁵ U,			
		another 1.5 x 10 ⁹ years; ²³⁸ U will have not halved again so ratio reaches	;		
		0.0072 soon after 6×10^9 years / calc for both isotopes / calc based on	_		
		235 varying and 238 constant /	2		
		basis of suggestion unreliable max 1		[5]	
_		Total		11	
6	(a)	(i) Radial towards centre	1		
		(ii) Anticlockwise	1		
		(iii) $F = BII$	1		
		(iv) $F = 0.40 \times 80 \times 10^{-3} \times 15$; = 0.48 (N)	2	[5]	
	(b)	(i) Sine/cosine curve; amplitude correct; 2 cycles in 40 ms	3		
		(ii) $a = (-) 4\pi^2 f^2 A$; = 4 x 9.87 x 25 x 10 ² x 2 x 10 ⁻³ ; = 197 (m s ⁻²)	3		
		(iii) 1 $F = ma = 0.02 \times 200 = 4$ (N)	1		
		2 I/0.08 = 4/0.48; $I = 0.67$ or $I = F/BI = 4/(0.4 \times 15) = 0.67$ (A) ecf	2	[9]	
	(c)	(i) Resonance	1		
		(ii) 122 (Hz) range118-126	1	_	
		(iii) Amplitude at peak will increase; curve will become narrower	2	[4]	
		/sharper; amplitude increases thoughout; more pronounced at peak;			
		resonant frequency increased slightly max 2			
		Total		18	

Criteria for assessment of written communication

4 marks

- The candidate expresses ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically.
- Arguments are consistently relevant, based on sound knowledge of Physics, and are well structured.
- There are few, if any, errors in grammar, punctuation and spelling.

3 marks

- The candidate expresses moderately complex ideas clearly and reasonably fluently through welllinked sentences and paragraphs.
- Arguments are generally relevant being based on a good knowledge of physics, and are well structured.
- There are occasional errors in grammar, punctuation and spelling.

2 marks

- The candidate expresses straightforward ideas clearly and accurately, if not always fluently. Sentences and paragraphs are not always well connected.
- Arguments may sometimes stray from the point or be weakly presented.
- There are some errors in grammar, punctuation and spelling, but not to suggest a serious weakness in these areas.

1 mark

- The candidate expresses simple ideas clearly, but is imprecise and awkward in dealing with complex or subtle concepts.
- Arguments are of doubtful relevance or obscurely presented.
- Errors in grammar, punctuation and spelling and noticeable and intrusive, suggesting weaknesses in these areas.

0 marks

- Even simple ideas are not expressed clearly.
- Arguments are irrelevant or poorly stated.
- There are gross errors in grammar, punctuation and spelling.

Question		Expected Answers		Marks	
7	(a)	α-particle scattering		1	
	(/	suitable diagram with source, foil, moveable detector		1	
		2 or more trajectories shown		1	
		vacuum (to remove absorption)		1	
		most particles have little if any deflection		1	
		large deflection of very few		1	
		reference to Coulomb's law /elastic scattering		1	
		alphas repelled by nucleus (positive charges)		1	
		monoenergetic;		1	
		max 6 marks			
		OR electron scattering		1	
		high energy		1	
		diagram with source sample, moveable detector/film		1	
		vacuum		1	
		electron accelerator or other detail		1	
		electrons diffracted by nucleus (as obstacle not slit)		1	
		most have zero deflection		1	
		characteristic angular distribution with minimum		1	
		minimum not zero		1	
		de Broglie wavelength		1	
		wavelength comparable to nuclear size hence high energy		1	
		max 6 marks		[6]	J
	(b)	(i) splitting of nuclei, fusing of nuclei/massive, light nuclei/large			
		(200 MeV), small (30 MeV) energy release per reaction		1	
		release of energy/total mass decrease/increase' in binding energlease radiation eg neutrons	ergy/	1	
		(ii) neutron is absorbed by the nucleus;		1	
		which then splits into two (major) fragments;		1	
		and several/two/three neutrons		1	
		charges on/Coulomb repulsion pushes major fragments apar loss of mass/increased binding energy accounts for k.e. of	t;	1	
		fragments/release of energy		1	
		reference to $\Delta E = c^2 \Delta m$		1 [6]	ì
		max 4 marks	Total	12	-
		Quality of Written Communication		[4]	ŀ